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Abstract. We prove that for q ≥ 13, an element A of SL(2, q) is the
commutator of a generating pair if and only if A 6= −I and the trace of
A is not 2. Consequently, when q is odd and q ≥ 13, every nontrivial
element of PSL(2, q) is the commutator of a generating pair, and when
q is even, an element of PSL(2, q) is the commutator of a generating
pair if and only if its trace is not 0. The proof of these results also leads
to an improved lower bound on the number of T -systems of generating
pairs of PSL(2, q).

Recently major progress has been made in understanding the commutator
map α : G × G → G for a finite simple group. In particular, S. Garion and
A. Shalev [7] used representation theory and the Witten zeta function to
prove that α is almost equidistributed as |G| → ∞. As a consequence,
the probability that an element g ∈ G can be expressed as a commutator
g = [x, y] where {x, y} is a generating pair of G goes to 1 as |G| → ∞.

In this paper we use elementary arguments to sharpen the latter statement
when G is PSL(2, q):

Commutator Theorem. When q is odd and q ≥ 13, every nontrivial
element of PSL(2, q) is a commutator of a generating pair. When q is even,
an element of PSL(2, q) is a commutator of a generating pair if and only if
its trace is not 0.

The conclusion of the Commutator Theorem is false for q = 3, 5, 7, 9, and
11.

The Commutator Theorem is an immediate consequence of the following
statement:

Theorem 2.2. When q = 2, 4, 8 or q ≥ 13, an element A of SL(2, q) is the
commutator of a generating pair if and only if the trace of A is not 2 and
A 6= −I.

Theorem 2.2 follows from a more technical result, Theorem 2.1, which
also provides the following lower bound for the number of T -systems of
generating pairs:
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T -system Theorem. Let q = ps, p prime. When q is even or q ≥ 13, the
number of T -systems of generating pairs of PSL(2, q), and hence of SL(2, q),
is bounded below by Ψq −1, where Ψq is the number of orbits of the Aut(Fq)-
action on the field of q elements Fq. This number is given by the following
formula, in which ϕ denotes the Euler totient function:

Ψq =
1

s

∑

r|s

ϕ(s/r) pr .

M. Evans, in his dissertation [5], proved that the number of T -systems of
PSL(2, q) goes to ∞ as q does. More precisely, he showed by computation
that every element of the field Fq of q elements other than 0 and 2 appears
as the trace of the commutator of a generating pair, and deduced the lower
bound ⌈ q−2

s
⌉ for the number of T -systems. The proof of our main technical

result, Theorem 2.1, is similar to Evans’ method.
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1. T -systems and trace invariants

Denote by Gn the set of generating n-tuples of a group G. The elements of
Gn can be identified with the surjective homomorphisms from the free group
Fn of rank n onto G. In this way, we may regard Aut(Fn)×Aut(G) as acting
on Gn by (φ, α)·γ = α◦γ◦φ−1. The orbits of this action are called T -systems
and the orbits of its restriction to Aut(Fn) are called Nielsen classes.

For an element (g1, g2) ∈ G2(G), the union of the conjugacy classes of the
commutator [g1, g2] = g1g2g

−1
1 g−1

2 and its inverse is a well-known invariant
of the Nielsen class of (g1, g2), called the Higman invariant.

From now on, we restrict attention to the case when G is SL(2, q) or
PSL(2, q), and n = 2. Observe that for elements A,B ∈ PSL(2, q), the com-
mutator [A,B] is well-defined in SL(2, q). The commutator and its inverse,
as well as all their conjugates, have the same trace, so the trace of [A,B]
is a well-defined invariant of the Nielsen class of (A,B), which we call the
trace invariant.

The automorphisms of SL(2, q) and PSL(2, q) are well-understood, by the
following result due to Schreier and van der Waerden [13] (see also [2], [4],
and the appendix to [9]).
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Theorem. Every automorphism of SL(2, q) or of PSL(2, q) has the form
A 7→ PAφP−1, where P is an element of GL(2, q), and Aφ is the matrix
obtained by applying an automorphism φ of Fq to each entry of A.

Conjugation has no effect on the trace invariant, but applying a field au-
tomorphism to the coefficients of A and B changes the trace of [A,B] by
the field automorphism itself. Therefore the orbit of the trace invariant un-
der Aut(Fq) is an invariant of the T -system, which we call the weak trace
invariant.

2. Commutators from trace invariants

In the next section, we will prove the following realization theorem for
trace invariants:

Theorem 2.1. For q = 2, 4, 8 or q ≥ 13, the trace invariants of PSL(2, q),
and hence of SL(2, q), are the elements of Fq −{2}. In the remaining cases,
the trace invariants are as follows:

1) For q = 3, q = 9, and q = 11, all elements except 1 and 2.
2) For q = 5, only 1 and 3.
3) For q = 7, all elements except 0, 1, and 2.

In the remainder of this section, we will use Theorem 2.1 to prove the follow-
ing result, which as already noted immediately implies the Main Theorem.

Theorem 2.2. When q = 2, 4, 8 or q ≥ 13, an element A of SL(2, q) is the
commutator of a generating pair if and only if the trace of A is not 2 and
A 6= −I.

First we recall the well-known conjugacy classes in SL(2, q):

Proposition 2.3. If A,B ∈ SL(2, q) and tr(A) 6= ±2, then A is conjugate
to B if and only tr(A) = tr(B). For each of the traces 2 and −2, there are
two conjugacy classes when q is even and three when q is odd.

We will verify the second part, since we need the notation anyway. Consider
an element X of SL(2, q) having trace 2ǫ where ǫ = ±1. It is conjugate

to a matrix of the form

(

ǫ µ
0 ǫ

)

, so the nonempty set M(X) of elements µ

that appear in such conjugates is a complete invariant of the conjugacy class

of X. Conjugation by an element P of SL(2, q) takes

(

ǫ µ
0 ǫ

)

to

(

ǫ µ′

0 ǫ

)

if and only if P is upper triangular. In this case, writing P =

(

x b
0 x−1

)

,

the effect of conjugation by P is to multiply µ by x2. So M(X) is either 0
(when X = ±I), or is the set of nonzero elements that are squares, or is the
set of non-squares.
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Proof of Theorem 2.2. If −I were the commutator of a generating pair, then
PSL(2, q) would be abelian. The trace of [A,B] cannot be 2, since then
SL(2, q) would fix a 1-dimensional subspace of F

2
q (after conjugation [A,B]

is an unipotent matrix T , and then ABA−1 and TB have the same trace,
implying that B and then A are also upper triangular).

Conversely, assume that X 6= −I and tr(X) 6= 2. By Theorem 2.1 there
is a generating pair (A,B) with tr([A,B]) = tr(X). If tr(X) 6= −2, then
Proposition 2.3 gives a C with X = C[A,B]C−1 = [CAC−1, CBC−1]. This
completes the proof for even q, so we assume that q is odd, tr(X) = −2, and
X 6= −I.

Suppose that q ≡ 3 mod 4. Then −1 is not a square in Fq, so in the
notation used above to verify Proposition 2.3, M([B,A]) = −M([A,B]) 6=
M([A,B]). Thus the conjugacy classes of [A,B] and [B,A] are distinct and
are the two conjugacy classes of matrices of trace −2 other than −I. So X
is conjugate to either [A,B] or [B,A], and the result follows as before.

Suppose now that q ≡ 1 mod 4. Then −1 is a square, so M([B,A]) =
−M([A,B]) = M([A,B]). By Theorem 2.1, at least one of the conjugacy
classes of matrices of trace −2 is a Higman invariant, so we may suppose
that X is not conjugate to [A,B].

By conjugation we may choose (A,B) so that [A,B] =

(

−1 t
0 −1

)

for

some nonzero t ∈ Fq. Conjugating by a matrix in SL(2, q2) of the form
(

π 0
0 π−1

)

, where π2 ∈ Fq but π /∈ Fq, changes (A,B) to a generating

pair (A′, B′) of SL(2, q) having commutator

(

−1 tπ2

0 −1

)

, which must be

conjugate to X. �

3. Proof of Theorem 2.1

As already seen in the proof of Theorem 2.2, (A,B) cannot be a generating
pair of PSL(2, q) when tr([A,B]) = 2. It remains to show that all elements
of Fq − {2} are trace invariants when q ≥ 13. For q ≤ 11, Theorem 2.1
can be verified by elementary arguments or by direct calculation, say using
GAP [6]. A GAP script for these calculations is available at the first author’s
website [11]. So we may assume that q ≥ 13.

The subgroups of PSL(2, q) were determined by L. E. Dickson [3]. The
following statement, in which q = ps with p prime and d denotes gcd(2, q−1),
is from Theorem 3(6.25) of Suzuki [14].

Theorem 3.1. Every subgroup of PSL(2, q) is isomorphic to (at least) one
of the following.

(a) (small subgroups) The dihedral groups of orders 2(q ± 1)/d and their
subgroups.
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(b) (triangular subgroups) A group H of order q(q − 1)/d and its sub-
groups. A Sylow p-subgroup H0 of H is elementary abelian and nor-
mal in H. The quotient H/H0 is cyclic of order (q − 1)/d.

(c) (exceptional subgroups ) A4, S4, or A5.
(d) (linear subgroups) PSL(2, pr) or PGL(2, pr) where r divides s.

The subgroups H0 in (b) are also p-Sylow subgroups of PSL(2, q), so are
conjugate to the subgroup of upper triangular elements.

An element of PSL(2, q) is called parabolic if its trace is ±2. Parabolic
elements have order p. For nonparabolic elements, we have the following
information from (2.3) and (2.4) of [8].

Lemma 3.2. The orders of nonparabolic elements of PSL(2, q) are exactly
the divisors of (q + 1)/d and (q − 1)/d. In particular, the maximum order
of a nonparabolic element of PSL(2, q) is (q + 1)/d.

For x, y ∈ Fq with x 6= 0, put Hx =

(

x 0
0 x−1

)

and Jy =

(

y + 1 1
y 1

)

.

The next lemma is a straightforward calculation.

Lemma 3.3. Put D = x− x−1. Then [Hx, Jy] =

(

1 − Dxy Dx(y + 1)
−Dx−1y 1 + Dx−1y

)

.

Consequently, the trace of [Hx, Jy] is 2 − D2y.

The next lemma will ensure that Hx and Jy do not generate a small or
triangular subgroup.

Lemma 3.4. Assume that y 6= 0, and that x4 6= 1 and x6 6= 1. Then
[Hx, Jy ] and [H−1

x , Jy ] do not commute in PSL(2, q).

Proof. Again write D = x − x−1, which is nonzero since x2 6= 1. Now
[H−1

x , Jy] = [Hx−1, Jy], so [H−1
x , Jy] is obtained from the expression in

Lemma 3.3 by replacing each appearance of x with x−1 (hence each D with
−D). One then calculates

[Hx, Jy] [H
−1
x , Jy] =

(

1 + D3xy(y + 1) D2(y + 1) − D3xy(y + 1)
D2y + D3x−1y2 1 − D3x−1y(y + 1)

)

.

Again, by replacing each x by x−1, we obtain

[H−1
x , Jy] [Hx, Jy ] =

(

1 − D3x−1y(y + 1) D2(y + 1) + D3x−1y(y + 1)
D2y − D3xy2 1 + D3xy(y + 1)

)

.

If these matrices are equal, then their (2, 1) entries show that x = −x−1,
in contradiction to the assumption that x4 6= 1. So assume that p 6= 2 and
the matrices differ by multiplication by −I. From the (2, 1) entries, we have
1 − Dxy = −1 − Dx−1y, or D2y = 2. From the (1, 1) entries, we find that
1−D3x−1y(y+1) = −1−D3xy(y+1), which implies that D4y(y+1) = −2,
and using D2y = 2 this leads to D2 = −3. But the equation D2 = −3 says
that x2 − 2 + x−2 = −3, that is, x4 + x2 + 1 = 0. Multiplying by x2 − 1
shows that x6 = 1, in contradiction to the hypothesis. �
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Proposition 3.5. Assume that q ≥ 13. Suppose that x generates Fq − {0}
and that y 6= 0. Then Hx and Jy generate SL(2, q).

Proof. Since q > 7, we have x4 6= 1 and x6 6= 1. It suffices to show that the
images of Hx and Jy in PSL(2, q) generate, so suppose that the subgroup
S that they generate is proper. Consider the four possibilities for S given
in Theorem 3.1. Small or triangular subgroups have abelian commutator
subgroups, so are ruled out by Lemma 3.4. The order of Hx is (q − 1)/2,
which is at least 6, so S cannot be exceptional.

Assume that S is a linear subgroup, and consider first the case that S is
isomorphic to PSL(2, pr), where r is a proper divisor of s. By Lemma 3.2
the order of Hx is no more than (pr + 1)/d. Since r < s, this is less than
(ps − 1)/d, the known order of Hx.

The remaining possibility is that p > 2 and S is isomorphic to PGL(2, pr).
Since H2

x is contained in a subgroup isomorphic to PSL(2, pr), Lemma 3.2
shows that (ps − 1)/2, the order of Hx, is no more than pr + 1. This can
hold only when p = 3 and s = 2, that is, q = 9. �

To see that Proposition 3.5 implies Theorem 2.1 in the case q ≥ 13, let
x be a generator of Fq − {0}, and put D = x − x−1. By Proposition 3.5
and Lemma 3.3, all traces of the form 2 − D2y with y 6= 0 arise as trace
invariants of generating pairs for PSL(2, q).

4. Proof of the T -system Theorem

We turn now to T -equivalence. Denoting by Ψq the number of orbits of
the action of Aut(Fq) on Fq, Theorem 2.1 tells us immediately which orbits
consist of trace invariants, giving the following counts:

Corollary 4.1. The numbers of orbits of the Frobenius automorphism that
occur as weak trace invariants of generating pairs of PSL(2, q) are as follows:

i) If q = 2, q = 4, q = 8, or q ≥ 13, then Ψq − 1 orbits occur.
ii) If q = 3, q = 9, or q = 11, then Ψq − 2 orbits occur.
iii) If q = 5 or q = 7, then Ψq − 3 orbits occur.

In the remainder of this section, we will prove that

Ψq =
1

s

∑

r|s

ϕ(s/r) pr .

The T -system Theorem then follows directly from Corollary 4.1.
This formula for Ψq is surely well-known, although we have not found an

explicit statement in the literature. Experts in finite fields (we thank, in
particular, H. Niederreiter) observe that the number of orbits is the same
as the number of monic irreducible polynomials over Fp of degree dividing
s, each orbit being the set of roots of one such polynomial. Consequently,
the number e(r) of orbits with r elements (which equals the number of
monic irreducible polynomials of degree r) satisfies q =

∑

r|s re(r), and a
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formula for e(s) can be obtained using Möbius inversion (see for example
[10, Ch. III.2]). In fact the formula for e(s) is the same as our formula
for Ψq but with ϕ replaced by the Möbius function µ. Summing these for
r dividing s and then manipulating using the fact (also a consequence of

Möbius inversion) that ϕ(s)
s

=
∑

r|s
µ(r)

r
gives the formula for Ψq. Rather

than writing out the details of that, or worse yet, leaving them to the reader,
we will present here an elegant proof shown to us by Gareth Jones, that
deduces the formula for Ψq in a few lines using Burnside’s Lemma and a few
of the most elementary properties of Fq.

Burnside’s Lemma says that the number of orbits of a finite group acting
on a finite set equals the average number of fixed points of the elements of
the group:

Lemma 4.2 (Burnside’s Lemma). If a finite group G acts on a finite set
Ω, then the number of orbits is given by

1

|G|

∑

g∈G

π(g)

where π(g) is the number of points fixed by g.

Burnside’s Lemma can be proven by elementary counting arguments (see
for example [1]), and a better name for it is the Burnside-Cauchy-Frobenius
formula (see [12]).

Recall that Aut(Fq) is a cyclic group generated by the Frobenius auto-
morphism Φ that sends each x to xp. Also, Fpr occurs as a subfield of Fps if
and only if r|s, and that it is the unique subfield of this order.

To obtain the formula for Ψq, we will apply Burnside’s Lemma with Ω =
Fps and G = Aut(Fps). Each element Φm of G has order s/r, where r =
gcd(m, s), and there are ϕ(s/r) elements of this order for each divisor r of
s. Such an element has the same fixed points as Φr, since each is a power of
the other, and the fixed points of Φr are the roots of the polynomial xpr

−x.
These roots form the subfield Fpr , so π(Φm) = pr. Burnside’s Lemma now
yields the formula for Ψq.

The same argument, with q in the role of p, shows that for any prime
power q, the number of orbits of the action of the Galois group AutFq

Fqs

on Fqs is
1

s

∑

r|s

ϕ(s/r) qr.

Since Φ has order s, the ceiling ⌈ q
s
⌉ is trivially a lower bound for the

number Ψq of orbits of Aut(Fq), and since Φ fixes each element of the subfield

Fp, ⌈
q−p

s
⌉ + p is an obvious lower bound. It gives the exact count whenever

s is prime (or s = 1), since then all orbits contain s elements except those in
the subfield Fp. But even for composite s this bound is very accurate, apart
from a few small values of q, because the vast majority of elements of Fq

do not lie in any proper subfield and consequently almost all orbits have s
elements. For example, using GAP [6] we find that for Ψ230 = 35, 792, 568,



8 DARRYL MCCULLOUGH AND MARCUS WANDERLEY

the bound of 35, 791, 397 is approximately 99.9967% of the exact value, while
the bound of 29, 484, 565, 267, 122, 446 is approximately 99.99999984% of
Ψ2916 = 29, 484, 565, 316, 813, 125.
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