
EXCEPTIONAL SUBGROUPS OF SL(2, F )

DARRYL MCCULLOUGH

Abstract. For A, B ∈ SL(2, C), R. C. Churchill gave simple conditions
in terms of tr(A), tr(B), and tr(AB) to determine whether the image
of the subgroup 〈A, B〉 in PSL(2, C) is isomorphic to A4, S4, or A5. We
prove that the same conditions work for SL(2, F ) for any field F , except
when the image is A5 and F has characteristic 3, 11, 19, or 29.

Introduction

Some work of R. C. Churchill [1] includes a characterization of two-
generator subgroups of SL(2, C) that generate a subgroup of PSL(2, C) iso-
morphic to either A4, S4, or A5. It may be useful to have an extension of
this characterization to SL(2, F ) for other F . To this end, drawing consid-
erably on Churchill’s ideas, we will prove that it extends to all fields, except
for certain cases in characteristics p = 3, 11, 19, and 29.

To set up the statement of the main result, fix a field F of characteristic
p, possibly 0. Replace F by its algebraic closure, if necessary, to assume
that it is algebraically closed. Write

√
2 for one of the nonzero solutions of

x2 = 2, which exist only when p 6= 2. Write µ1 for one of the solutions of
x2−x−1 = 0, and put µ2 = µ−1

1 = µ1−1. Note that−µ2 is the other solution
of x2 − x− 1 = 0, and that µ2 and −µ1 are the solutions of x2 + x− 1 = 0.
Define T2 = {0}, T3 = {±1}, T4 = {±

√
2}, and T5 = {±µ1,±µ2}. It is

an elementary fact (see section 1) that for 2 ≤ n ≤ 5 and A ∈ SL(2, F )
(A 6= ±I), A has order n in PSL(2, F ) if and only tr(A) ∈ Tn. In particular,
if at least two of tr(A), tr(B), and tr(AB) are 0, then the subgroup that A
and B generate in PSL(2, F ) is dihedral or is a subgroup of C2 × C2.

Our Main Theorem involves the trace of the commutator [A,B] of two
elements of SL(2, F ). It can be expressed in terms of tr(A), tr(B), and
tr(AB) using the well-known Fricke trace identity

tr([A,B]) = tr2(A) + tr2(B) + tr2(AB)− tr(A) tr(B) tr(AB)− 2 .

Finally, write 〈A,B〉 for the subgroup of SL(2, F ) generated by A and B,
and P : SL(2, F ) → PSL(2, F ) for the canonical projection. In the statement
of the Main Theorem and throughout our work, two groups are considered
to be equal whenever they are isomorphic.
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Main Theorem. Let A,B ∈ SL(2, F ), with no more than one of tr(A),
tr(B), or tr(AB) equal to 0. Then

1) P (〈A,B〉) = A4 if and only if tr(A), tr(B), tr(AB) ∈ T2 ∪ T3 and
tr([A,B]) = 0.

2) P (〈A,B〉) = S4 if and only if tr(A), tr(B), tr(AB) ∈ T2 ∪T3 ∪T4 and
tr([A,B]) = 1.

3) Apart from the exceptional cases listed below, P (〈A,B〉) = A5 if
and only if tr(A), tr(B), tr(AB) ∈ T2 ∪ T3 ∪ T5 and tr([A,B]) ∈
{−µ2, 1, µ1}. In each of the following exceptional cases, one can find
examples of pairs A,B with tr(A), tr(B), tr(AB) ∈ T2∪T3∪T5, where
P (〈A,B〉) does equal A5, and where it does not equal A5:
(a) p ∈ {3, 11, 29} and tr([A,B]) ∈ {µ1,−µ2}.
(b) p = 19 and tr([A,B]) = 1.

In the exceptional cases, it is easy to tell by examination of tr(A), tr(B), and
tr(AB) whether or not P (〈A,B〉) = A5. The method requires information
from the proof of the Main Theorem, so we will defer its explanation until
the very end of this paper.

Our proof of the Main Theorem uses only elementary trace identities and
calculations, with occasional assistance from the GAP package of computer
algorithms [2]. Unfortunately, a large number of cases must be considered;
we hope that our presentation has organized them in a way that minimizes
the pain.

Throughout, we freely use the elementary trace identity tr(AB−1) +
tr(AB) = tr(A) tr(B) and its consequences (such as tr(A2) = tr(A)2 − 2
and the Fricke trace identity).

1. Preliminaries

The following facts about elements A ∈ SL(2, F ) (A 6= ±I) are easily
checked:

1) A2 = I if and only if p = 2 and tr(A) = 0.
2) A2 = −I if and only if tr(A) = 0.
3) A3 = ±I if and only if tr(A) = ∓1.
4) A4 = −I if and only if tr(A)2 = 2.
5) A5 = ±I if and only if tr(A) = ∓µ1 or tr(A) = ±µ2.

These show that P (A) has order n if and only if tr(A) ∈ Tn.
We will use the following, which is part of Proposition 8.1 of [1].

Proposition 1.1. In the following, g and h denote elements of a certain
group, for which g /∈ 〈h〉 and h /∈ 〈g〉. Then

1) If g, h ∈ A4, then 〈g, h〉 = A4 if and only if at least one of g and h
has order 3.

2) If g, h ∈ S4, then 〈g, h〉 = S4 if and only if at least one of g, h, and
gh has order 4, and at most one has order 2.

3) If g, h ∈ A5, then 〈g, h〉 = A5 if and only if at least one of g, h, and
gh has order 5, and at most one has order 2.
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It will be convenient to use Nielsen equivalence. The Nielsen group for
pairs is

U = C2 ∗ C2 ∗ C2 = 〈t, u, v | t2, u2, v2〉 .

If K is any group, U acts on the set of pairs K ×K as follows.

1. t(A,B) = (A−1, B)
2. u(A,B) = (B,A)
3. v(A,B) = (A−1, AB)

The orbits of the action of U on K×K are called Nielsen equivalence classes
of pairs. Put more concretely, pairs are Nielsen equivalent when one can
be obtained from the other by any sequence of operations of replacing an
element by its inverse, interchanging the two elements of the pair, or pre-
or post-multiplying one element by the other, or by the inverse of the other.
Note that Nielsen equivalent pairs generate the same subgroup of K.

An F -triple is an element of F × F × F . The Nielsen group acts on the
set of F -triples as follows:

1) t(α, β, γ) = (α, β, αβ − γ)
2) u(α, β, γ) = (β, α, γ)
3) v(α, β, γ) = (α, γ, β)

This action is induced from the action of U on SL(2, F ) × SL(2, F ) via
the function Tr defined by Tr(A,B) = (tr(A), tr(B), tr(AB)); that is, if
Tr(A,B) = (α, β, γ), then t ◦ Tr = Tr ◦t, u ◦ Tr = Tr ◦u, and v ◦ Tr =
Tr ◦v. For u and v this is obvious, and for t it is simply the identity that
tr(A−1B) = tr(A) tr(B)−tr(AB). We declare two F -triples to be equivalent
if they lie in the same U-orbit. In particular, permuting the entries of a triple
produces an equivalent triple.

From now on, we assume that K = SL(2, F ). For this case, we fur-
ther declare (A,B) to be equivalent to each of (−A,B), (A,−B), and
(−A,−B). Via Tr, these induce the further equivalences of (α, β, γ) with
each of (−α, β,−γ), (α,−β,−γ), and (−α,−β, γ). Both equivalence rela-
tions are denoted by the symbol ∼.

For notational convenience, we define the Fricke polynomial Q : F 3 → F
by

Q(α, β, γ) = α2 + β2 + γ2 − α β γ − 2 ,

so that tr([A,B]) = Q(tr(A), tr(B), tr(AB)).
It is straightforward to check that if A,B ∈ SL(2, F ) and (A,B) ∼

(A′, B′), then P (〈A,B〉) = P (〈A′, B′〉). Moreover, tr([A,B]) = tr([A′, B′]),
and consequently

Q(tr(A), tr(B), tr(AB)) = Q(tr(A′), tr(B′), tr(A′B′)) .

Thus in the proof of the Main Theorem, we may replace (A,B) by any equiv-
alent pair, or (tr(A), tr(B), tr(AB)) by any equivalent triple, while assuming
that P (〈A,B〉) and tr([A,B]) are unchanged.
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2. Proof of the “only if” direction of the Main Theorem

In the course of the proof, we will develop some additional information
about generating pairs of exceptional groups. Since some of it could be of
independent interest, we will organize most of the argument as a pair of
lemmas and a corollary. The lemmas are certainly well-known; in particular
Nielsen equivalence for generating pairs of A5 was first analyzed in [4].

Lemma 2.1. Let H be A4 or S4. Then any two generating pairs of H are
Nielsen equivalent. Consequently:

1) Any generating pair of A4 is Nielsen equivalent to a pair (g, h) for
which g3 = h3 = (gh)2 = 1.

2) Any generating pair of S4 is Nielsen equivalent to a pair (g, h) for
which g4 = h3 = (gh)2 = 1.

Proof. For A4, we may assume using proposition 1.1(a) that g has order
3, and by conjugation (which can be achieved by Nielsen equivalence) and
possibly replacing g by g−1, we may assume that g = (123). If h has order
2, replace it by gh which has order 3. Conjugating h by powers of g and
possibly replacing h by h−1, we may assume that h = (431). That is,
every generating pair is Nielsen equivalent to ((123), (431)), which obey the
relations in (a).

For S4, we may similarly assume using proposition 1.1(b) that g = (1234).
Not both h and gh can have order 4, since S4/A4

∼= C2, so we may assume
that h has order 3. Conjugating h by powers of g and possibly replacing h
by h−1, we may assume that h = (321). That is, every generating pair is
Nielsen equivalent to ((1234), (321)), which obey the relations in (b). �

Lemma 2.2. Let H be A5. Then any generating pair of H is Nielsen
equivalent to exactly one of the pairs ((12345), (124)), ((12345), (12354)), or
((12354), (125)).

Proof. By proposition 1.1, we may assume that g is a 5-cycle. By conjugation
we may make it one of (12345) or (12354); assume for now that it is the first.
Using lemma 8.2 of [1], we may assume that h is not a 5-cycle.

Suppose first that h has order 2. Conjugating h by g, we may assume that
h is either (12)(34), (13)(24), or (14)(23). The latter case is impossible since
then, gh has order 2 and 〈g, h〉 is dihedral. In the first two cases, gh and
respectively g2h are 3-cycles. Replacing the pair by (g, gh) or by (g, g2h), we
may assume that h is a 3-cycle. Conjugating h by g, and possibly replacing
h by h−1, we may assume that h is either (123) or (124). If h = (124), we
have the first pair, while if h = (123), then (g, g3hg3) is the second pair.

For the case when g is conjugate to (12354), a very similar argument
(e. g. just conjugate everything in the previous argument by (45)) shows
that (g, h) is Nielsen equivalent to the second or third pair.

To see that these three pairs are not Nielsen equivalent, regard A5 as
SL(2, 4). We have {µ1, µ2} = F4 − {0, 1}, and we choose notation so that
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the matrix corresponding to (12345) has trace µ1 and the one corresponding
to (12354) has trace µ2. Then,

1) If (A,B) ∈ SL(2, 4) × SL(2, 4) corresponds to ((12345), (124)), then
tr([A,B]) = Q(µ1, 1, 0) = µ2

1 + 1 = µ1.
2) If (A,B) ∈ SL(2, 4)×SL(2, 4) corresponds to ((12345), (12354)), then

tr([A,B]) = Q(µ1, µ2, 0) = µ2
1 + µ2

2 = 1.
3) If (A,B) ∈ SL(2, 4) × SL(2, 4) corresponds to ((12354), (125)), then

tr([A,B]) = Q(µ2, 1, 0) = µ2
2 + 1 = µ2.

Since tr([A,B])) is an invariant of the Nielsen equivalence class, no two of
the three pairs are Nielsen equivalent. �

Corollary 2.3. Let A,B ∈ SL(2, F ), and suppose that P (〈A,B〉) = A5.
Then Q(tr(A), tr(B), tr(AB)) ∈ {µ1, 1,−µ2}. Moreover,

(a) (A,B) is Nielsen equivalent to a pair for which P (A)5 = P (B)3 =
P (AB)2 = P (I) if and only if tr([A,B]) ∈ {µ1,−µ2}.

(b) (A,B) is Nielsen equivalent to a pair for which P (A)5 = P (B)5 =
P (AB)2 = P (I) and P (A) is not conjugate to P (B) if and only if
tr([A,B]) = 1.

Proof. If we can change (A,B) by equivalence so that P (A)5 = P (B)3 =
P (AB)2 = P (I), then the associated traces are (±µ1,±1, 0) or (±µ2,±1, 0),
and we find that tr([A,B]) = µ1 and tr([A,B]) = −µ2 respectively. If not,
then by lemma 2.2 we may assume that P (A)5 = P (B)5 = P (AB)2 =
P (I) with P (A) and P (B) not conjugate in A5. Since F is algebraically
closed, elements of SL(2, F ) having the same trace are conjugate provided
that the trace is not ±2. If p 6= 5, then µ1 and µ2 are not ±2, and it
follows that one of tr(A) or tr(B) is ±µ1 and the other is ±µ2. Therefore
tr([A,B]) = µ2

1 + µ2
2 − 2 = µ1 − µ2 = 1. If p = 5, then ±µ1 = ±µ2 = ±2,

and tr([A,B]) = 4 + 4− 2 = 1 for all possibilities. �

We remark that µ1 = −µ2 if and only if p = 5 (in which case both equal
3), so tr([A,B]) fails to distinguish the two Nielsen classes in part (a) if and
only if p = 5.

Now we can deduce the only if direction of the Main Theorem. If P (〈A,B〉)
is one of A4, S4, or A5, then by consideration of the orders of elements in
these three groups, it is immediate that the traces of A and B lie in the
specified sets.

If P (〈A,B〉) = A4, then P ([A,B]) lies in the commutator subgroup of
A4, which consists of involutions, so tr([A,B]) = 0.

If P (〈A,B〉) = S4, then by lemma 2.1 we may change (A,B) by Nielsen
equivalence to assume that P (A)4 = P (B)3 = P (AB)2 = P (I), in which
case tr([A,B]) = Q(±

√
2,±1, 0) = 1.

If P (〈A,B〉) = A5, then corollary 2.3 completes the proof.
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3. Proof of the “if” direction of the Main Theorem

In this section, we write α, β, and γ for tr(A), tr(B), and tr(AB) respec-
tively.

Assume first that the conditions in part 1) hold. Since no two of α, β,
and γ can be 0, we may use equivalence of triples to assume that α = β = 1.
The condition that Q(1, 1, γ) = tr([A,B]) = 0 then forces γ = 0 or γ = 1.
If γ = 0, then P (A)3 = P (B)3 = P (AB)2 = I so P (〈A,B〉) = A4. If γ = 1,
then (1, 1, 1) ∼ (1, 1, 0) and again P (〈A,B〉) = A4.

Assume now that the conditions in part 2) hold. We may assume using
proposition 1.1 that α =

√
2. Since no two of α, β, and γ are 0, we may

assume that β is
√

2 or 1.
Suppose first that β =

√
2, so (α, β, γ) is of the form (

√
2,
√

2, γ). The
five possible values (−

√
2,−1, 0, 1,

√
2) of γ lead to the corresponding values

(4+2
√

2, 5, 2, 1, 4−2
√

2) for Q(
√

2,
√

2, γ). Putting these equal to 1 leads to
immediate contradictions (in particular, Q = 5 implies that p = 2 and hence
that α = β = 0) except in the case when γ = 1. So (α, β, γ) = (

√
2,
√

2, 1) ∼
(
√

2, 1,
√

2) ∼ (
√

2, 1, 0) which gives P (A)4 = P (B)3 = P (AB)2 = P (I), so
P (〈A,B〉) = S4.

Suppose now that β = 1, so (α, β, γ) is of the form (
√

2, 1, γ), where we
may assume that γ 6=

√
2. We find that 1 = Q(

√
2, 1, γ) = γ2 −

√
2γ + 1, so

γ = 0 and again we conclude that P (〈A,B〉) = S4.
Finally, assume that the conditions in part 3) hold. By proposition 1.1

we may assume that α ∈ {µ1, µ2}. If α = ±µ2, then we change our notation
so that µ1 becomes the other root −µ2 of x2 − x − 1. So α becomes ∓µ1,
and after possibly applying an equivalence to (α, β, γ), we may assume that
α = µ1. We will analyze the values of Q(µ1, β, γ) for all possible cases.

Case I. (α, β, γ) = (µ1, µ1, γ)

The subcases where Q(µ1, µ1, γ) has each of the allowable values of µ1, 1,−µ2

are indicated by the letters A, B, and C respectively. There are further sub-
cases corresponding to the seven possible values (−µ1,−µ2,−1, 0, 1, µ2, µ1)
for γ, and in our notation for cases we indicate them by the correspond-
ing numerals 1 through 7. Thus, for example, the case when (α, β, γ) =
(µ1, µ1,−µ2) and Q(µ1, µ1,−µ2) = µ1 is case IA2.

We calculate that Q(µ1, µ1, γ) = γ2 − µ1γ − γ + 2µ1. The corresponding
values of Q(µ1, µ1, γ) are (5µ1 + 2, 2µ1 + 2, 3µ1 + 2, 2µ1, µ1, 2, µ1). Thus in
case IA2, we additionally know that (µ1, µ1, γ) = 2µ1 + 2, so we obtain
the equality 2µ1 + 2 = µ1. In our analysis of the various cases, we use
the equality so obtained either to reach a contradiction showing that the
subcase can never occur (as in Case IA4), or we show that the equality is
an identity and hence always holds (as in Case IA5), or we show that it
can only hold under certain conditions on p and µ1 (as in Case IB1). In
analyzing the cases, one frequently uses the observation that if mµ1 = n,
then n2 = m2µ2

1 = m2µ1 + m2 = mn + m2.
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Case IA1. Q(µ1, µ1,−µ1) = µ1. From 5µ1 + 2 = µ1 and the observation, we
find that p = 2. This case is contained in case IA7 below.
Case IA2. Q(µ1, µ1,−µ2) = µ1. From 2µ1 + 2 = µ1 and the observation, we
find that this holds if and only if p = 5. But then, −µ2 = µ1, so this case is
contained in case IA7.
Case IA3. Q(µ1, µ1,−1) = µ1. We find that p = 2. This case is contained
in case IA5 below.
Case IA4. Q(µ1, µ1, 0) = µ1. This gives the contradiction µ1 = 0.
Case IA5. Q(µ1, µ1, 1) = µ1. This holds for all p.
Case IA6. Q(µ1, µ1, µ2) = µ1. This gives the contradiction that 0 = 1.
Case IA7. Q(µ1, µ1, µ1) = µ1. This holds for all p.
Case IB1. Q(µ1, µ1,−µ1) = 1. This holds if and only if (p, µ1) = (19,−4).
For from 5µ1 +2 = 1 the observation gives −5+25 = 1 so p must be 19, and
solving the linear equation gives µ1 = −4. And when p = 19, Q(−4,−4, 4)
is indeed 1.
Case IB2. Q(µ1, µ1,−µ2) = 1. This gives the contradiction 0 = 1.
Case IB3. Q(µ1, µ1,−1) = 1. This holds if and only if p = 5. But then,
(µ1, µ1,−1) = (µ1,−µ2,−1) ∼ (µ1, µ2, 1), so this is contained in case IIB5.
Case IB4. Q(µ1, µ1, 0) = 1. This holds if and only if p = 5. But then,
(µ1, µ1, 0) = (µ1,−µ2, 0) ∼ (µ1, µ2, 0), so this is contained in case IIB4.
Case IB5. Q(µ1, µ1, 1) = 1. This gives the contradiction that µ1 = 1.
Case IB6. Q(µ1, µ1, µ2) = 1. This gives the contradiction that 1 = 0.
Case IB7. Q(µ1, µ1, µ1) = 1. This gives the contradiction that µ1 = 1.
Case IC1. Q(µ1, µ1,−µ1) = −µ2. This holds if and only if (p, µ1) = (29,−5).
Case IC2. Q(µ1, µ1,−µ2) = −µ2. This holds if and only if p = 5. But then,
(µ1, µ1,−µ2) = (µ1, µ1, µ1), so this is contained in case IA7.
Case IC3. Q(µ1, µ1,−1) = −µ2. This holds if and only if (p, µ1) = (11,−3).
Case IC4. Q(µ1, µ1, 0) = −µ2. This holds if and only if (p, µ1) = (11, 4).
Case IC5. Q(µ1, µ1, 1) = −µ2. This holds if and only if p = 5, but then it
is contained in case IA7.
Case IC6. Q(µ1, µ1, µ2) = −µ2. Adding µ1 to both sides of 2 = −µ2 gives
2 + µ1 = 1 so µ1 = −1, a contradiction.
Case IC7. Q(µ1, µ1, µ1) = −µ2. This holds if and only if p = 5, but then it
is contained in case IA7.

Case II. (α, β, γ) = (µ1, µ2, γ)

Since γ = ±µ1 would give a triple equivalent to one of those in case I, we
need only examine the subcases for which γ is one of (∗,−µ2,−1, 0, 1, µ2, ∗),
where the ∗ means an ignored case. The corresponding values of Q(µ1, µ2, γ)
are (∗, 2, 3, 1, 1, 2 − 2µ2, ∗). We trust that the reader’s appetite to examine
elementary cases is by now sated, so from now on we only give summary
information.
Cases IIA2, IIA4, IIA5, IIB2, IIB6, IIC2, IIC4, and IIC5. These lead to
contradictions.
Case IIB3. Q(µ1, µ2,−1) = 1. This holds if and only if p = 2, which is
contained in case IIB5.
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Cases IIA3, IIA6, IIC3, and IIC6. These hold if and only if p = 5. But then
these cases are contained in cases IA5, IA7, IA5, and IA7 respectively.
Case IIB4. Q(µ1, µ2, 0) = 1. This holds for all p.
Case IIB5. Q(µ1, µ2, 1) = 1. This holds for all p.
Case III. (α, β, γ) = (µ1, 1, γ)

Since γ = ±µ1,±µ2 would fall under Case I or Case II, we need only
examine γ one of (∗, ∗,−1, 0, 1, ∗, ∗), with corresponding values of Q(µ1, 1, γ)
equal to (∗, ∗, 2µ1 + 1, µ1, 1, ∗, ∗).
Cases IIIA3, IIIA5, IIIB4, IIIC5. These lead to contradictions.
Case IIIB3. Q(µ1, 1,−1) = 1. This holds if and only if p = 2, which is
contained in case IIIB5.
Case IIIC4. Q(µ1, 1, 0) = −µ2. This holds if and only if p = 5. But then it
is contained in case IIIA4.
Case IIIC3. Q(µ1, 1,−1) = −µ2. This holds if and only if p = 3.
Case IIIA4. Q(µ1, 1, 0) = µ1. This holds for all p.
Case IIIB5. Q(µ1, 1, 1) = 1. This holds for all p.

We first analyze the six cases that hold for all p (the ten cases found in
[1] for SL(2, C) can quickly be reduced to these six by replacement of µ2 by
−µ1 and/or applying equivalences). For each of the six cases, we will apply
equivalences until the traces indicate a generating pair P (〈A,B〉) for which
P (A)5 = P (B)3 = P (AB)2 = P (I).
Case IA5. (µ1, µ1, 1) ∼ (µ1, 1, µ1) ∼ (µ1, 1, 0).
Case IA7. (µ1, µ1, µ1) ∼ (µ1, µ1, 1), which is case IA5.
Case IIB4. (µ1, µ2, 0). Using basic trace identities, we calculate tr(B2) =
tr2(B) − 2 = µ2 − 2 = −µ1, and tr(AB2) = tr(AB) tr(B) − tr(A) = −µ1.
Since P (B) has order 5, we have P (〈A,B〉) = P (〈A,−B2〉), and from our
calculations, Tr(A,−B2) = (µ1, µ1, µ1), so case IA7 applies.
Case IIB5. (µ1, µ2, 1) ∼ (µ1, µ2, 0), which is case IIB4.
Case IIIA4. (µ1, 1, 0) is immediate.
Case IIIB5. (µ1, 1, 1) ∼ (µ1, 1, µ1 − 1) = (µ1, 1, µ2) ∼ (µ1, µ2, 1), which is
case IIB5.

We now analyze the exceptional cases IB1, IC1, IC3, IC4, and IIIC3, to
which all other exceptional cases have been reduced. Write G for 〈A,B〉. For
each of p = 3, 11, 19, and 29, the six general cases just considered provide
many examples with these values of p for which the conditions of the Main
Theorem hold and P (G) = A5 (for example, Theorem 1 of [3] shows that for
any triple (α, β, γ) that occurs in the six cases, there is a pair (A,B) in each
of SL(2, 9), SL(2, 11), SL(2, 19), or SL(2, 29) for which Tr(A,B) = (α, β, γ),
so we can just choose the triple to be (µ1, µ1, µ1) from Case IA7 and achieve
that P (G) = A5). So it remains to produce examples for these values of p
which satisfy the conditions of the Main Theorem but have P (G) 6= A5.

We begin with case IIIC3, for which we assume that p = 3. We have
(µ2, 1, 1) ∼ (µ2, 1, µ2 − 1). Computing in GAP with u = Z(9), the standard
GAP generator for the multiplicative group F9 − {0}, we find that µ1 can
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be u or u3 with corresponding values of µ2 either u7 or u5. But then µ2 − 1
is either u7 − 1 = u2 or u5 − 1 = u6. Since u2 = u3 + u−3 (or alternatively

because u2 ∈ T4), a matrix of trace u2, such as
(

u3 0
0 u−3

)
, has order 4

in PSL(2, 9). Since P (G) contains elements of order 4 as well as order 5,
P (G) 6≡ A5. The case of u6 = u + u−1 is similar.

For the remaining cases, we have a fixed (odd) value of p and we use u to
denote Z(p), the generator used by GAP for the multiplicative group of Fp.
We use v for Z(p2)p−1 ∈ Fp2 , for which v(p+1)/2 = −1.

Assume that p = 11, for which u = 2, and one of cases IC3 or IC4
occurs. For case IC3, we have µ1 = −3 = u3, (µ1, µ1,−1) = (u3, u3, u5) ∼
(u3, u5, u3) ∼ (u3, u5, u9). Since u9 = v+v−1, where v has order 12, a matrix
of trace u9 has projective order 6, showing that P (G) 6= A5. For case IC4,
µ1 = u2, (µ1, µ1, 0) = (u2, u2, 0) ∼ (u2, u2, u4). Since u4 = v5 + v−5, where
v5 has order 12, a matrix of trace u4 has projective order 6 and P (G) 6= A5.

Assume now that p = 19, for which u = 2, and case IB1 occurs. We have
µ1 = −4 = u11, and (u11, u11,−u11) ∼ (u11, u11, u15). Since u15 = u + u−1,
a matrix of trace u15 has projective order 9, so P (G) 6= A5.

Finally, we consider p = 29, for which u = 2 once again, and assume that
case IC1 occurs. We have µ1 = −5 = u8, (u8, u8,−u8) ∼ (u8, u8, u24), and
u24 = v4 + v−4 so a matrix of trace u24 has order 15.

This completes the proof of the Main Theorem.
As we remarked after the statement of the Main Theorem, in the excep-

tional cases, it is easy to determine from tr(A), tr(B), and tr(AB) whether
or not P (〈A,B〉) = A5. In practice, in the cases when P (〈A,B〉) 6= A5,
random applications of the equivalence moves of triples to (α, β, γ) will soon
yield an entry that is not in T2 ∪ T3 ∪ T5. But one can tell for certain,
as we will illustrate for p = 3 (the other cases being similar). Suppose
that tr(A), tr(B), tr(AB) ∈ T2 ∪ T3 ∪ T5 (and at least two are nonzero) and
tr([A,B]) ∈ {µ1,−µ2}. Write Tr(A,B) = (α, β, γ). From proposition 1.1,
we know that one of the entries is one of ±µ1 or ±µ2. Applying equivalences
and possibly changing our choice of root of x2 − x− 1, we may assume that
α = µ1. One of β or γ is nonzero, so applying more equivalences we may
make (α, β, γ) one of (µ1, µ1, γ), (µ1, µ2, γ), or (µ1, 1, γ). If γ /∈ T2 ∪T3 ∪T5,
then we already know that P (〈A,B〉) 6= A5. If γ ∈ T2 ∪ T3 ∪ T5, then from
the case-by-case analysis of the proof of the “only if” direction of the Main
Theorem, (µ1, β, γ) and the value of Q(α, β, γ) must now be either as in
one of the six general cases IA5, IA7, IIB4, IIB5, IIIA4, or IIIB5, or else as
in the special case IIIC3. The proof showed that in the six general cases,
P (〈A,B〉) = A5, while in case IIIC3, P (〈A,B〉) 6= A5.
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