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Handlebody will mean a compact orientable

3-dimensional handlebody.

Group actions on handlebodies have been stud-

ied extensively. See articles by various subsets

of:

{Bruno Zimmermann, Andy Miller,

John Kalliongis, McC} ∪ {others}

The remainder of this talk concerns recent joint

work with Marcus Wanderley, of Universidade

Federal de Pernambuco, Brazil.

From now on, action will mean an effective ac-

tion of a finite group G on a handlebody, by

orientation-preserving (smooth- or PL-) home-

omorphisms.
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If you usually work on actions on surfaces, you

might think that dimension 3 is too high.

I would argue that the study of free actions on

handlebodies is not a 3-dimensional problem,

but rather a (1 + ε)-dimensional problem.

A 3-dimensional handlebody is really a 1-complex

with some extra structure.

The study of actions on surfaces is closely re-

lated to hyperbolic geometry and certain kinds

of infinite group theory.

As we will see, the study of free actions on

handlebodies is closely related to a classical

topic in finite group theory, Nielsen equivalence

of generating vectors.
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Elementary Observation: Every finite group

acts freely on some handlebody.

Proof #1: Take an action of G on one of its

Cayley graphs, and thicken it up to an action

of G on a handlebody.

Proof #1′: Let Vµ be a handlebody of genus µ,

where µ is the minimum number of elements

in a generating set for G.

Since π1(Vµ) is free of rank µ, there is a

surjective homomorphism φ : π1(Vµ) → G.

The covering of Vµ corresponding to the kernel

of φ is a handlebody (since its fundamental

group is free), and it admits an action by G by

covering transformations, with quotient Vµ. �

χ ⇒ this covering is V1+(µ−1)|G|.
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On which handlebodies does G act?

One answer: the ones you get in the previous
construction by replacing µ by µ+ k for k ≥ 0.
But here is a different way of looking at it.

There is a simple stabilization process for going
from an action of G on V1+(µ−1)|G| to an action
on V1+(µ−1)|G|+|G|.

Adding a small 1-handle to the quotient
handlebody corresponds to adding |G| small
1-handles to V1+(µ−1)|G|, which are permuted
by the action of G. The result is a free
G-action on V1+(µ−1)|G|+|G|.

Repeating, we see that G acts freely on the
handlebodies V1+(µ+k−1)|G| for all k ≥ 0.

χ ⇒ these are the only genera

that admit free G-actions.
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How many different ways does G act on a given

genus of handlebody?

What does “different” mean?

Actions φ, ψ : G → Homeo(V ) are equivalent

when they are the same after a change of co-

ordinates on V .

(That is, there exists a homeomorphism h of

V so that φ(g) = h ◦ ψ(g) ◦ h−1 for all g ∈ G.)

They are weakly equivalent when they are the

same after changes of coordinates on V and

on G.

(That is, there exist a homeomorphism h of V

and an automorphism α of G so that

φ(α(g)) = h ◦ ψ(g) ◦ h−1 for all g ∈ G.)
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Example: For G = C5 = {1 , t , t2, t3, t4}, define

actions φ and ψ on the solid torus V1 = S1×D2

by:

φ(t)(θ, x) = (e2πi/5θ, x)

ψ(t)(θ, x) = (e6πi/5θ, x)

That is, in one action the generator t makes

a 1/5-turn and in the other action it makes a

3/5-turn.

These actions are weakly equivalent, since if

α(t) = t3 then φ(α(t)) = ψ(t), but are not

equivalent (using a result we will state later).

However, after a single stabilization, they be-

come equivalent.

Geometrically, this is complicated. The next

page is a sequence of pictures showing the

steps in constructing an equivalence of the sta-

bilized actions:
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Although the determination of when two ac-

tions are equivalent is geometrically compli-

cated, there is a simple group-theoretic crite-

rion for equivalence and weak equivalence.

This criterion uses a classical concept in group

theory, called Nielsen equivalence of generating

vectors of G. It was studied by J. Nielsen,

J. Thompson, B. & H. Neumann, and others,

and has found various uses in algebra.

In topology, Nielsen equivalence for generating

vectors of π1(M
3) has been used by Y. Moriah

and M. Lustig to detect nonisotopic Heegaard

splittings of various kinds of 3-manifolds.

9



Define a generating n-vector for G to be a vec-

tor (g1, . . . , gn), where {g1, . . . , gn} generates G.

Two generating n-vectors (g1, . . . , gn) and

(h1, . . . , hn) are related by an elementary Nielsen

move if (h1, . . . , hn) equals one of:

1. (gσ(1), . . . , gσ(n)) for some permutation σ,

2. (g1, . . . , g
−1
i , . . . , gn),

3. (g1, . . . , gig
±1
j , . . . , gn), where j 6= i,

Call (s1, . . . , sn) and (t1, . . . , tn) Nielsen equiv-

alent if they are related by a sequence of ele-

mentary Nielsen moves.

Call them weakly Nielsen equivalent if

(α(s1), . . . , α(sn)) and (t1, . . . , tn) are Nielsen

equivalent for some automorphism α of G.
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Using only elementary covering space theory,

one can check that:

The (weak) equivalence classes of free G-

actions on V1+(n−1)|G| correspond to the

(weak) Nielsen equivalence classes of gen-

erating n-vectors of G.

This criterion for equivalence was known to

Kalliongis & Miller a number of years ago, in

fact it appears between the lines of some of

their published work, and was probably known

to others as well.
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Here is the basic idea of the proof. Suppose
you have a free action of G on some V . Its
quotient is a handlebody W of some genus n.

Choose a basis {x1, . . . , xn} for the free group
π1(W ).

Each xi lifts to a covering transformation gi.
These form a generating n-vector (g1, . . . , gn).

Changing the basis changes {x1, . . . , xn} by a
sequence of Nielsen transformations, hence changes
(g1, . . . , gn) by Nielsen equivalence, so the Nielsen
equivalence class of (g1, . . . , gn) is well-defined.

One checks that this process gives a bijective
correspondence. This is where the fact that
we are using handlebodies (rather than, say,
bounded surfaces) is used. 12



Example revisited: Recall that C5 = {1 , t , t2, t3, t4}
acts on the solid torus V1 = S1×D2 by φ(t) =
1/5-turn and ψ(t) = 3/5-turn.

A free generator x1 of π1(W )

lifts to a 1/5 turn, which equals

φ(t) and ψ(t2). So the associ-

ated generating 1-vectors of C5

are:

φ 7→ (t)

ψ 7→ (t2)

These actions are inequivalent.

Proof: (t) is not Nielsen equivalent to (t3). �.

These actions are equivalent after one stabi-
lization.

Proof:

(t,1) ∼ (t, t2) ∼ (tt2t2, t2) = (1, t2) ∼ (t2,1) �
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Results about Nielsen equivalence imply:

1. For G = A5, there are two weak equiva-
lence classes of A5-actions on the minimal
genus V61 (B. & H. Neumann), and three
equivalence classes.

2. For G = A6, there are four weak equiva-
lence classes of A6-actions on the minimal
genus V361 (D. Stork), and at least seven
equivalence classes.

3. (M. Dunwoody) For G solvable, all free ac-
tions on a genus above the minimal are
equivalent. But for any N there is a solv-
able G with at least N weak equivalence
classes of minimal-genus free actions.

4. For G = PSL(2, p), p prime (R. Gilman),
PSL(2,3p), p prime (McC-Wanderley), and
PSL(2,2m) and Sz(22m−1) (M. Evans), all
free actions on a genus above the minimal
are equivalent.
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Simple but difficult questions:

Is it true that for every finite G:

1. All free G-actions on any genus above the
minimal one are equivalent?

I. e. if n > µ, are any two generating
n-vectors Nielsen equivalent?
(For some infinite G, no)

2. Every free G-action is the stabilization of
a minimal genus action?

I. e. is every generating n-vector equivalent
to one of the form (g1, . . . , gµ,1, . . . ,1)?

3. Any two free G-actions on a handlebody
become equivalent after one stabilization?

I. e. are any two generating n-vectors of
the form (g1, . . . , gn−1,1) and (h1, . . . , hn−1,1)
equivalent?

Yes for 1 ⇐⇒ Yes for both 2 and 3. 15



What makes the study of Nielsen equivalence

difficult is the almost total lack of invariants

of Nielsen equivalence.

I say “almost,” because there is one invariant

of Nielsen equivalence, the Nielsen invariant.

It works only for 2-generator groups.

In recent work, we have used it to prove results

about the groups PSL(2, q). For example:

The number of weak equivalence classes of free

actions of PSL(2,230) on its minimal genus

g = 1 + 230(260 − 1) ≈ 1.238× 1027

is at least 35,792,567.
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The Nielsen invariant is based on the fact that
if (x1, x2) and (y1, y2) are Nielsen-equivalent
generating pairs for G, then the commutator
[x1, x1] is conjugate in G to either [y1, y2] or
[y1, y2]

−1 ([y1, y2]
−1 = [y2, y1]).

For example, (x1, x2) is Nielsen equivalent to
(x1, x

−1
2 ), and

[x1, x
−1
2 ] = x1x

−1
2 x−1

1 x2 =

x−1
2 x2 · x1x−1

2 x−1
1 x2 = x−1

2 [x2, x1]x2 .

So, the pair of (possibly equal) conjugacy classes
of [x1, x2] and [x2, x1] is an invariant of the
Nielsen equivalence class of (x1, x2). We call
this pair the Nielsen invariant.

In general, the Nielsen invariant is difficult to
work with, but when G = PSL(2, q), [A,B] is a
well-defined element of SL(2, q), and the traces
of [A,B] and [B,A] are the same, and are the
same as the traces of any of their conjugates.
So there is a well-defined trace invariant de-
fined by sending the generating pair (A,B) to
tr([A,B]), an element of the field Fq.
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Which elements of Fq can occur as trace invari-

ants of generating pairs? Usually, all elements

except 2. The precise result is:

Theorem 1 (McC-Wanderley) The elements

of Fq that occur as trace invariants of gener-

ating pairs of PSL(2, q) are as follows:

i) For q = 2, q = 4, q = 8, and all q > 11, all

elements except 2 occur.

ii) For q = 3, q = 9, and q = 11, all elements

except 1 and 2 occur.

iii) For q = 5, only 1 and 3 occur.

iv) For q = 7, all elements except 0, 1, and 2

occur.
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The Nielsen invariant is an invariant of equiv-
alence, but what about weak equivalence?

The automorphisms of PSL(2, q) are pleasantly
simple:

Theorem 2 (Schreier and van der Waerden)
Every automorphism of SL(2, q) or of PSL(2, q)
has the form A 7→ PAφP−1, where P is an ele-
ment of GL(2, q), and Aφ is the matrix obtained
by applying an automorphism φ of Fq to each
entry of A.

Conjugating by P does not change the trace
of [A,B]. Applying φ to all the elements of the
matrices just applies φ to its trace. So weakly
equivalent generating pairs have trace invari-
ants that differ by an automorphism of Fq.

That is, the orbit in Fq of the trace of [A,B]
under the automorphism group Aut(Fq) is an
invariant of the weak Nielsen equivalence class
of the generating pair (A,B). We call it the
weak trace invariant.
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Define Ψq to be the number of orbits of the

action of Aut(Fq) on Fq. The Main Theorem

ensures that at least Ψq − 3 orbits occur as

weak trace invariants, and that if q > 11, then

Ψq − 1 orbits occur.

Thus, for q > 11, Ψq − 1 is a lower bound

for the number of weak equivalence classes of

minimal-genus free actions of PSL(2, q).

So, how many orbits are there for the action

of Aut(Fq) on Fq?
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Aut(Fq) is also pleasantly simple. We have

q = ps for some prime p, and Aut(Fq) is cyclic

of order s, generated by the Frobenius auto-

morphism that sends x to xp.

Since the Frobenius automorphism has order

s, no orbit has more than s elements. So the

number
q

s
is an obvious lower bound for Ψq.

But orbits that lie in proper subfields are smaller.

Example: the six orbits of the Frobenius auto-

morphism x 7→ x3 on F32 = {ax+b | x2 = x+1}:
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The exact number of orbits is given by the

formula:

Ψq =
1

s

∑
d|s
ϕ(s/d) pd

where ϕ(n) is the Euler function defined by

ϕ(1) = 1 and ϕ(n) is the number of positive

integers less than n and relatively prime to n

when n > 1.

This is a consequence of Burnside’s lemma.
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In fact,
q

s
is a very accurate estimate of Ψq,

except for some small values of q. This is be-

cause all of the orbits outside the proper sub-

fields of Fq have size s, and the subfields of Fq
are much smaller than Fq.

For example, the largest subfield of F230 is F215,

which has “only” 215 elements, i. e. only 1/215

of the number of elements of F230.

The formula gives the exact number of orbits

in F230 to be 35,792,568, and the crude lower

bound of 230/30 gives 35,791,395, which is

approximately 99.9967% of the exact number.
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How complete is the trace invariant?

We do not know. So far, we have only one

special construction which for some q produces

two different Nielsen equivalence classes of gen-

erating pairs of PSL(2, q) with trace invariant

−2. It works provided that q ≡ 1 (mod 4) and

Fq has the following property:

There exist two generators x and y of the cyclic

multiplicative group Fq−{0} such that x2−1 is

a square in Fq and y2− 1 is not a square in Fq.

The determination of which Fq that have this

property appears to be a difficult algebraic prob-

lem. For q = 5, 9, and 13, Fq does not have

the property, for q = 17 and 29 it does.
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