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(joint work with Sangbum Cho, in “The tree of

knot tunnels”, ArXiv math.GT/0611921, and

“The depth of a knot tunnel”, in preparation)

The classic picture:

H

A tunnel number 1 knot K ⊂ S3 is a knot for

which you can take a regular neighborhood of

the knot and add a 1-handle in some way to get

an unknotted handlebody (i. e. a handlebody

which can be moved by isotopy to the standard

handlebody H in S3.)

The added 1-handle is called a tunnel of K.
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Tunnels are equivalent when there is an orienta-

tion-preserving homeomorphism of S3 taking

knot to knot and tunnel to tunnel.

(There is also a concept of isotopy of tunnels.

But all of our work uses only equivalence up

to homeomorphism.)

If X is the knot space S3 − Nbd(K), then H∩X

and S3 − H form a genus-2 Heegaard splitting

of the manifold-with-boundary X.

That is, X is decomposed into a compression

body H ∩X and a genus-2 handlebody S3 − H.

The equivalence classes of tunnels correspond

to the homeomorphism classes of genus-2 Hee-

gaard splittings of knot spaces. So the study

of tunnel number 1 knots is the same as the

study of genus-2 Heegaard splittings of knot

spaces up to homeomorphism. But we will not

use this viewpoint explicitly.
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A natural idea is to examine a cocore 2-disk

of the tunnel. An isotopy taking the knot and

tunnel to H carries the cocore 2-disk to some

disk τ in H.

H

τ

Different isotopies moving the knot and tunnel

to H may produce different disks in H. So

each knot tunnel will produce some collection

of nonseparating disks in H.

And each nonseparating disk τ in H is the co-

core disk of a tunnel of some knot, in fact of

the knot Kτ which is the core circle of the solid

torus obtained by cutting H along τ .
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To develop this idea, we must deal with two

problems:

1. Understand the nonseparating disks in H.

2. Understand how changing the choice of iso-

topy to the standard H can change the disk

we get in H.

Problem 1 was answered a long time ago. And

Problem 2 is now answered by recent work of

M. Scharlemann, E. Akbas, and S. Cho. We

can combine this information to develop a new

theory of tunnel number 1 knots.

Remark: For a tunnel of a tunnel number 1

link, the cocore disk of the tunnel is a sepa-

rating disk. Our entire theory adapts easily to

allow links instead of just knots. For simplicity,

we will just talk about knots.
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First, let’s understand the nonseparating disks

in the genus-2 handlebody H.

(From now on, “disk” will mean “nonseparat-

ing disk.”)

Let D(H) be the complex of disks of H.

A vertex of D(H) is an isotopy class of properly-

imbedded disks in H.

A collection of k + 1 distinct vertices spans a

k-simplex when one may select representative

disks that are disjoint.

D(H) is 2-dimensional, because one can have

at most 3 disjoint nonisotopic disks in H. Here

are two 2-simplices that meet in an edge:
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D(H) looks like this:

— D(H) has countably many 2-simplices at-

tached along each edge

— D(H) is contractible (McC 1991, better

proof Cho 2006). In fact, it deformation

retracts to a bipartite tree T which has

valence-3 vertices corresponding to triples

of disks and countable-valence vertices cor-

responding to pairs of disks in H
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Since H is the standard handlebody in S3, D(H)

has extra structure:

A disk D ⊂ H is primitive if there exists a

“dual” disk D′ ⊂ S3 − H such that ∂D and ∂D′

cross in one point. Here are two primitive disks

in H:

One can prove that τ is primitive if and only if

Kτ is the trivial knot in S3. That is, the primi-

tive disks are exactly the disks that correspond

to the trivial tunnel.
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The Goeritz group Γ is the group of orientation-

preserving homeomorphisms of S3 that pre-

serve H, modulo isotopy through homeomor-

phisms preserving H.

Two isotopies moving a knot and tunnel to H

differ by an element of Γ.

That is, the action of Γ is the indeterminacy

of the disk obtained by moving the knot and

tunnel to H.

Put differently,

— Γ acts on D(H), and

— the orbits of the vertices under this action

correspond to the equivalence classes of all

tunnels of all tunnel number 1 knots.

Therefore an equivalence class of tunnels cor-

responds to a single vertex of the quotient

complex D(H)/Γ.
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Theorem 1 (M. Scharlemann, E. Akbas) Γ is

finitely presented.

This theorem was proven by delicate arguments

using an action of Γ on a complex whose ver-

tices are certain 2-spheres.

Cho reinterpreted their proof using the disk

complex, and using his work we can completely

understand the action of Γ on D(H), and de-

scribe the quotient D(H)/Γ, which looks like

this:

D(H)/Γ deformation retracts to the tree T/Γ.
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Some other interesting features in D(H)/Γ are:

1. π0, the orbit of primitive disks, which rep-

resents the tunnel of the trivial knot.

2. µ0, the orbit of a primitive pair.

3. θ0, the orbit of a primitive triple.

The last two are vertices of the tree T/Γ. The

vertices that correspond to tunnels are those

(like π0) that are images of vertices of D(H).
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Fix a tunnel τ .

Since T/Γ is a tree, there is a unique path in

T/Γ that starts at θ0 and travels to the nearest

barycenter of a simplex that contains τ . This

is called the principal path of τ , shown here:
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Traveling along the principal path of τ encodes

a sequence of simple “cabling constructions”

that produce new knots and tunnels, starting

with the tunnel of the trivial knot and ending

with τ .
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The following picture indicates how this works:
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Since T/Γ is a tree, every tunnel can be ob-

tained by starting from the tunnel of the triv-

ial knot and performing a unique sequence of

cabling constructions.
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A cabling operation is described by a ratio-

nal “slope” parameter that tells which disk be-

comes the new tunnel disk (i. e. which of the

countably many edges to take out of a black

vertex).

m = 5/2m =  −3

The slope of the final cabling operation is (up

to details of definition) the tunnel invariant dis-

covered by M. Scharlemann and A. Thompson.

The sequence of these slopes (plus a little bit

more information telling which branch one takes

at the white vertices), completely classifies the

tunnel.
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Let’s look at the example of 2-bridge knots.

Roughly speaking, two-bridge knots are classi-

fied by a rational number (modulo Z) whose

reciprocal is given by the continued fraction

with coefficients equal to the number of half-

twists in the positions shown here:
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The tunnels shown here are called the “upper”

or “lower” tunnels of the 2-bridge knot.
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The upper and lower tunnels of 2-bridge knots

are the tunnels that are obtained from the triv-

ial knot by a single cabling operation. For

technical reasons, the first slope parameter is

only well-defined in Q/Z, and not surprisingly it

is essentially the standard invariant that clas-

sifies the 2-bridge knot.

Our theory gives easy proofs of the following

theorems about upper and lower tunnels:

Theorem 2 (D. Futer) Let α be a tunnel arc

for a nontrivial knot K ⊂ S3. Then α is fixed

pointwise by a strong inversion of K if and only

if K is a two-bridge knot and α is its upper or

lower tunnel.

Theorem 3 (C. Adams-A. Reid, M. Kuhn)

The only tunnels of a 2-bridge link are its upper

and lower tunnels.
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The other tunnels of 2-bridge knots were clas-

sified by T. Kobayashi, K. Morimoto, and M.

Sakuma. Besides the upper and lower tunnels,

there are (at most) two other tunnels, shown

here:

12a

2b1

22a

bn
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For these other tunnels, the number of ca-

blings equals the number of full twists of the

middle two strands, that is, a1 + a2 + · · ·+ an.

Each of these cablings adds one full twist to

the middle two strands, but an arbitrary num-

ber of half-twists to the left two strands:
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We have worked out an algorithm that starts

with the classifying invariant of the 2-bridge

knot, and obtains the slope parameters of the

cablings in the cabling sequence of these other

tunnels.

It is a bit complicated, but can be implemented

computationally. Some sample output from

the program:

TwoBridge> slopes (33/19)
[ 1/3 ], 3, 5/3

TwoBridge> slopes (64793/31710)
[ 2/3 ], -3/2, 3, 3, 3, 3, 3, 7/3, 3, 3, 3, 3, 49/24

TwoBridge> slopes (3860981/2689048)

[ 13/27 ], 3, 3, 3, 5/3, 3, 7/3, 15/8, -5/3, -1, -3

TwoBridge> slopes (5272967/2616517)

[ 5/9 ], 11/5, 21/10, -23/11, -131/66

19



Some of the applications of our theory use a

tunnel invariant called the depth of the tunnel.

The depth of τ is the distance in the 1-skeleton

of D(H)/Γ from the (orbit of the) primitive

disk π0 to τ .

The tunnel that we saw earlier has depth 5:
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The depth-1 tunnels are exactly the type usu-

ally called (1,1)-tunnels.

Their associated knots can be put into 1-bridge

position with respect to a torus × I (genus-1

1-bridge position). A (1,1)-tunnel for a (1,1)-

knot looks like this with respect to some (1,1)-

position:

τ

π0

τ together with one of the arcs of the knot

is an unknotted circle in S3, so τ is disjoint

from a primitive disk π0, i. e. τ has depth 1.

Conversely, it can be shown that every depth-1

tunnel is a (1,1)-tunnel.
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We saw that moving through T/Γ corresponds

to constructing new tunnels by cabling con-

structions.

Moving through the 1-skeleton of D(H)/Γ also

corresponds to a geometric construction of tun-

nels. It appears first in a paper of H. Goda, M.

Scharlemann, and A. Thompson, and we call

it a GST-move.

Start with a knot and a tunnel τ .

τ
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Choose any loop K in ∂H that crosses τ in

exactly one point. It turns out that this must

be a tunnel number 1 knot with a tunnel disk

σ disjoint from τ .

τ

K

σ

τ

In D(H)/Γ, this GST-move corresponds to mov-

ing along the 1-simplex from τ to σ.

23



θ
πµ

τ

0
0

0

Thus our depth 5 tunnel can be obtained from

the trivial tunnel by 5 GST-moves, and this is

the minimal number possible.

GST-moves can have a much more drastic ef-

fect than cabling constructions— this example

requires 15 cabling constructions. Also, any

(1,1)-tunnel is produced from the trivial tun-

nel by a single GST-move.
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The minimal GST-sequence producing a given

tunnel is usually not unique. In this example,

there are two places where another route is

possible, leading to four possible minimal GST-

sequences producing τ .

It is a combinatorial exercise to work out an al-

gorithm for the number of minimal paths from

π0 to τ in the 1-skeleton of D(H)/Γ, and hence

the number of minimal GST-move construc-

tions of a tunnel.
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For a sparse infinite set of tunnels, there is a

unique minimal GST-construction sequence.

In contrast, for example, this depth-5 tunnel

has 8 minimal GST-constructions:

τ

π0

If one continues in this same pattern, the first

depth-n tunnel in this sequence has an minimal

GST-constructions, where

(a0, a1, a2, a3, a4, . . .) = (1,1,2,3,5,8,13, . . .)
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Using the “tunnel leveling” theorem of H. Goda-

M. Scharlemann-A. Thompson, as applied to

GST-moves in their original paper, we can find

the minimum bridge number of Kτ as a func-

tion of depth(τ).

Theorem 4 For d ≥ 1, the smallest bridge

number of a knot having a tunnel of depth d

is b2d, where bn is the sequence given by the

recursion

b2 = 2, b3 = 2

b2n = b2n−1 + b2n−2

b2n+1 = b2n + b2n−2

Corollary 1 For any sequence of tunnels, the

asymptotic growth rate of the bridge number

of Kτ as a function of depth(τ) is at least pro-

portional to (1 +
√

2)d, and this rate is best

possible, in general.
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Another measure of complexity for a tunnel

has been studied by J. Johnson, A. Thompson,

Y. Minsky-Y. Moriah-S. Schleimer, and others:

The (Hempel) distance dist(τ) is the distance

in the curve complex C(∂H) from ∂τ to a loop

that bounds a disk in S3 − H.

Distance is related to depth by dist(τ) − 1 ≤
depth(τ) (so (1+

√
2)d is also a lower bound for

the growth rate of bridge number as a function

of distance).

But depth is a finer invariant than distance:

The “short” tunnels of torus knots all have

distance 3, but their depths can be arbitrar-

ily large (the depth of the short tunnel of the

(p, q)-torus knot is approximately the number

of terms in the continued fraction expansion

of p/q).

28



It would be very interesting to understand bet-

ter the relation between depth and distance.

Recent work of S. Schleimer

— When does a cabling operation that in-

creases depth also increase distance?

— In particular, is there a cabling construc-

tion of non-integral slope that raises depth

but does not raise distance?

(For the large-depth small-distance exam-

ples of torus knot tunnels, all the cabling

constructions have integral slope.)
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The disk complex imbeds in the curve complex

C(∂H), just by taking each D to ∂D. Here is a
schematic picture:

D(H)

D(S  −  H)3

π
0

distance

depth

6

< 3

stable region

The “stable region” is the region of tunnels of
distance at least 6. J. Johnson, using results of

M. Scharlemann and M. Tomova, proved that

Theorem 5 If K has a tunnel of distance at

least 6, then this tunnel is the unique tunnel

of K up to isotopy.
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It appears that much of the complicated be-

havior of tunnel number 1 knots appears at

depth 1, i. e. the (1,1)-tunnels.

For example, as far as I know there is no known

example of a knot that has more than one

equivalence class of tunnels of depth greater

than 1.

— Most torus knots have three equivalence

classes, two of depth 1 and the other of

larger depth.

— For the other known examples of knots

with multiple equivalence classes of tun-

nels (2-bridge knots, some pretzel knots,

etc.), all tunnels are depth 1.

Conjecture: No knot has more than one tunnel

of depth larger than 1.
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A few words about knots of tunnel number

≥ 2:

The analogous theory for knots of tunnel num-

ber larger than 1 would involve the disk com-

plexes of higher genus handlebodies. For genus

g, the disk complex is (3g−4)-dimensional. Al-

though these are contractible, their structures

seem much more difficult to understand than

for the genus-2 case.

It also appears to be much more difficult to

understand the subcomplex of primitive disks,

or even to be sure what to use as the concept

of primitivity.

In fact, for genus ≥ 3, it has not even been

proven that the Goeritz group is finitely gener-

ated. However, very recent work D. Bachman

and S. Schleimer appears to give a proof that

the complex of reducing spheres is connected,

which should imply the finite generation.
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