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Today’s topics:

1. The tree of knot tunnels: a quick review.

2. The Tunnel Leveling Addendum and some

of its applications.

3. Recent work on (1,1)-tunnels.

4. Work in progress on knots with more than

one equivalence class of tunnels.
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Our study of tunnel number 1 knots was orig-

inally motivated by some work of M. Scharle-

mann and A. Thompson, who defined a ratio-

nal invariant of a knot tunnel.

Let’s recall that a tunnel of a tunnel number 1

knot corresponds to a genus-2 Heegaard split-

ting of the knot exterior:

H
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H

τ

Under an isotopy moving the neighborhood of

the knot and the tunnel to the standard han-

dlebody H, the cocore disk of the tunnel moves

to a disk τ in H, and the knot moves to a core

of the complementary solid torus of τ in H.

τ is well-defined up to a homeomorphism of H

that results from moving H by isotopy through

S3 and back to its standard position. The

group of isotopy classes of such homeomor-

phisms of H is called the Goeritz group G.
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H

τ

On the other hand, for each nonseparating disk

τ in H, the core of its complementary solid

torus is a knot Kτ , and τ is the cocore disk of

a tunnel of Kτ .

Summary: The collection of all tunnels of all

tunnel number 1 knots corresponds to the col-

lection of nonseparating disks in the standard

handlebody H in S3, modulo the action of G.
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To understand the disks in H, we examine the

complex D(H) of nonseparating disks in H,

which is analogous to the curve complex of

a surface.

D(H) looks like this, with countably many 2-

simplices meeting at each edge:

and it deformation retracts to the tree T shown

in this figure.

Each white vertex of T is a triple of nonsepa-

rating disks, and each black vertex is a pair.
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Using S. Cho’s work on G (which builds on

prior work of M. Scharlemann and E. Akbas),

we can understand the action of G on D(H),

and work out the quotient D(H)/G:

Each of the vertices that is the image of a ver-

tex of D(H) is a tunnel of some tunnel number

1 knot.

The combinatorial structure of D(H)/G is re-

flected in the topology of the corresponding

knot tunnels.
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Here is an example. The white vertex θ0 is
the triple of standard disks {π0, π1, π}, and the
complementary knots Kπ, Kπ0, and Kπ1 are
trivial.

Removing π moves us to the black vertex µ0 =
{π0, π1}.

Adding τ0 moves us to the white vertex µ0 ∪
{τ0}. The complementary knot Kτ0 is a trefoil
and τ0 represents its unique tunnel. 8



Continuing through the tree gives another step

in this process:

π 1 π 0

τ1

1µ

π

τ
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τ τ

π π0 1 π π0

0

1

π

π

0

0

1

π

0

0

1

π

τ0

µ0

0θ

In short, a cabling construction is: Take the

tunnel arc and one of the arcs of the knot, and

attach the four ends using a rational tangle in

a neighborhood of the other arc of the knot.

This produces a new tunnel number 1 knot,

and a well-defined tunnel of it.
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At the third and subsequent steps, the choice

of which arc of the knot is kept and which is

replaced affects the result. This corresponds

to the fact that there are two ways to continue

out of a white vertex:

π 1 π 0

τ1

1µ

τ0

π

µ0

0θ

Since T/G is a tree, every tunnel can be ob-

tained by starting from the tunnel of the triv-

ial knot and performing a unique sequence of

cabling constructions.
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The path in T/G that encodes this unique se-

quence of cablings is called the principal path

of τ , shown here for a more complicated tun-

nel:

θ
πµ

τρ

λ

0
0

0

The last vertex {λ, ρ, τ} of the principal path is

important, and is called the principal vertex.
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A cabling operation is described by two items

of information:

1. A binary invariant si that tells which arc

of K is kept and which is replaced by the ra-

tional tangle. These invariants are expressible

in terms of the left-and-right turn sequence of

the principal path.

2. A rational “slope” parameter that tells which

rational tangle to use.

m = 5/2m =  −3

The slope of the final cabling operation is (up

to details of definition) the tunnel invariant dis-

covered by M. Scharlemann and A. Thompson.

We have calculated the sequences of slope in-

variants for all tunnels of two-bridge knots and

torus knots.
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The depth of a tunnel is the distance in the

1-skeleton of D(H)/G from the trivial tunnel

π0 to τ .

The tunnel that we saw earlier has depth 5:

θ
πµ

τ

0
0

0

Depth is related to the Heegaard distance of

the associated genus-2 Heegaard splitting of

the knot exterior:

distance − 1 ≤ depth .
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The depth-1 tunnels are exactly the type usu-

ally called (1,1)-tunnels.

Their associated knots can be put into 1-bridge

position with respect to a Heegaard torus in S3.

A (1,1)-tunnel for a (1,1)-knot looks like this

with respect to some (1,1)-position:

τ

π0

τ together with one of the arcs of the knot

is an unknotted circle in S3, so τ is disjoint

from a trivial tunnel π0, i. e. τ has depth 1.

Conversely, it can be shown that every depth-

1 tunnel is a (1,1)-tunnel.
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A powerful result about tunnels is the Tunnel

Leveling Theorem of H. Goda-M. Scharlemann-

A. Thompson. Roughly speaking, it says that

a tunnel arc of a tunnel number 1 knot can

be moved to lie in a level sphere of some mini-

mal bridge position of the knot. There are two

cases:

τ τ

λ

ρ

λ

ρ

The first is a level arc, and the second is an

“eyeglass,” which can occur only when τ is a

(1,1)-tunnel.

In other work, Scharlemann and Thompson

showed that the disks λ and ρ in these pic-

tures, together with τ , form the principal ver-

tex {λ, ρ, τ} of τ .

In the eyeglass case, λ is the trivial tunnel,

i. e. the principal vertex of τ is {π0, ρ, τ}.
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The knots Kλ and Kρ appear in this picture:

K K
λ ρ

τ

λ

ρ

λ

ρ

Thus

br(Kλ) + br(Kρ) ≤ br(Kτ) ,

which was observed and used by Goda, Scharle-

mann, and Thompson.
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Using our theory, we can prove the following

Tunnel Leveling Addendum:

1. When Kτ has depth at least 2,

br(Kλ) + br(Kρ) = br(Kτ) .

2. When Kτ has depth 1, with principal vertex

{π0, ρ, τ},

br(Kρ) ≤ br(Kτ) ≤ br(Kρ) + 1 .

The basic idea is that one can perform cabling

inductively so as to be “efficient” with respect

to bridge number, as seen in the following pic-

ture:

τ

ττ τ

λ

ρ

λ λ

There are similar but slightly more complicated

configurations for eyeglass tunnels.
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A careful inductive argument achieves a more

precise statement:

Tunnel Leveling Addendum: Let τ be a tunnel

with principal vertex {λ, ρ, τ}. If τ is depth 1,

write its principal vertex as {π0, ρ, τ}. Assume

that τ is not the tunnel of the trivial knot or a

(2n + 1,2) torus knot. Then either

(a) All level positions of τ are level arc posi-

tions, and br(Kτ) = br(Kρ) + br(Kλ), or

(b) All level positions of τ are eyeglass posi-

tions, τ has depth 1, and br(Kτ) = br(Kρ).

Corollary: When τ has depth ≥ 2,

br(Kτ) = br(Kρ) + br(Kλ) ,

and when τ has depth 1,

br(Kρ) ≤ br(Kτ) ≤ br(Kρ) + 1 .
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Thus, for example, the “path of cheapest de-

scent,” i. e. the principal path for which the

depth grows fastest relative to the bridge num-

bers, is:

6

14

34

58

24

10

4

22

The figure shows that the smallest bridge num-

ber for a knot with a tunnel of depth 5 is 58.

One can easily work out a recursion that tells

the minimum bridge number of a tunnel of

depth d.
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Theorem 1 For d ≥ 1, the minimum bridge

number of a knot having a tunnel of depth d is

given recursively by ad, where a1 = 2, a2 = 4,

and ad = 2ad−1 + ad−2 for d ≥ 3. Explicitly,

ad =
(1 +

√
2)d

√
2

− (1 −
√

2)d
√

2

and consequently lim
d→∞

ad − (1+
√

2)d
√

2
= 0.

There is also a maximum bridge number the-

orem, in terms of the number of cablings:

Theorem 2 Let (F1, F2, . . .) be the Fibonacci

sequence (1,1,2,3, . . .). The maximum bridge

number of any tunnel number 1-knot having a

tunnel produced by n cabling operations is Fn+2.
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To try to understand (1,1)-tunnels better, we

have developed a method for calculating the

slope invariants of any (1,1)-tunnel in terms of

a description of the (1,1)-position as a braid

of two points in the torus.
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The braid group of two points “black” and
“white” in the torus is generated by three sim-
ple braids:

δℓ - push black point around longitude

δm - push black point around meridian

σ - half-twist interchanging black and white
points

The braid δℓδmσ is shown here:

l

m

Putting trivial arcs at the top and bottom of a
braid gives a knot in (1,1)-position.
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A sequence σδℓσδℓ, anywhere in the braid, does

not change the knot, up to (1,1)-isotopy:

Similarly, a sequence σδmσδm has no effect.

Quotienting out Birman’s presentation of the

braid group by the subgroup generated by these

two elements (which is the center of the braid

group), gives the (reduced) braid group:

B = 〈 δm, δℓ, σ | (σδm)2 = (σδℓ)
2 = 1,

δ−1
ℓ δmδℓδ

−1
m = σ2 〉

Each word in B determines a knot in (1,1)-

position (many words give the same knot in an

isotopic (1,1)-position).

23



We can understand how a cabling operation

that takes a (1,1)-tunnel and gives another

changes the braid word. Here is a picture of

the “unwinding” of a cabling construction:

24



Using a continued fraction method, we can

compute the braid word in terms of the slopes

of the cablings.

Conversely, we can take a braid word, rewrite

it in a standard from, and read off the ca-

bling slopes. Thus we achieve an effective

translation between braid words and cabling se-

quences for (1,1)-tunnels.

Putting this on a computer, we can do a num-

ber of computations.

For example, we give a braid word such as

δ3mσ−2δ4ℓ σ−4δ−1
m σ−4δ3ℓ

and obtain the slope sequences for the upper

and lower (1,1)-tunnels:

> upperSlopes( ’m 3 s -2 l 4 s -4 m -1 s -4 l 3’ )
[ 21/25 ], 443/78, -15, -15

> lowerSlopes( ’m 3 s -2 l 4 s -4 m -1 s -4 l 3’ )

[ 16/19 ], -7, -7, -7, -195/31, -5, -5
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Conversely, we can give a slope sequence such

as

[21/25],443/78,−15,−15

and recover a braid word for the knot:

> print braidWord( [21,25,443,78,-15,1,-15,1] )
m 3 s -3 m -1 l -3 m 1 l -1 s -4 m 1 s -4 m -1 l -2 m 1
l -1

> upperSlopes( ’m 3 s -3 m -1 l -3 m 1 l -1 s -4

m 1 s -4 m -1 l -2 m 1 l -1’ )

[ 21/25 ], 443/78, -15, -15

Stringing these together gives a direct calcula-

tion of the slopes of one tunnel associated to

a (1,1)-position from the slopes of the other:

> dualSlopes( [21,25,443,78,-15,1,-15,1] )
[ 16/19 ], -7, -7, -7, -195/31, -5, -5

> dualSlopes( [16,19,-7,1,-7,1,-7,1,-195,31,-5,1,-5,1] )
[ 21/25 ], 443/78, -15, -15
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We achieve confirmation of the original cal-

culations of slope sequences for tunnels of 2-

bridge and (1,1)-tunnels of torus knots. For

example, for 2-bridge knots we have

> twoBridge( 413, 227 )
Upper simple tunnel: [ 131/413 ]
Upper semisimple tunnel: [ 1/3 ], 15/7, 9/5
Lower simple tunnel: [ 227/413 ]
Lower semisimple tunnel: [ 2/5 ], -1, -3/2, 1, 1, 1, 3

> print upperSemisimpleBraidWord( 413, 227 )
m -1 s -6 m -1 s 6 m -1 s 1 l -1
> print lowerSimpleBraidWord( 413, 227 )
m -1 s 1 l -1 s 6 l -1 s -6 l -1

> torusUpperSlopes( 13, 5 )
[ 1/5 ], 11, 15, 21
> torusLowerSlopes( 13, 5 )
[ 1/3 ], 3, 3, 5, 5, 7, 7, 7, 9, 9

> print torusBraidWord( 13, 5 )
m 1 l -3 m 1 l -2 m 1 l -3 m 1 l -3

We are currently working on using the braid

word method to understand tunnels of other

interesting knots, such as the (−2,3,7)-pretzel

knot.
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How many (equivalence classes of) tunnels can

a tunnel number 1 knot have? How many that

are not (1,1)-tunnels?

Terminology: (1,1)-tunnels are called semisim-

ple, non-(1, 1) tunnels are called regular.

Examples:

1. Knots with a unique regular tunnel

— This is the generic case for non-(1, 1) knots:

By a theorem of M. Scharlemann and M. To-

mova, if K has a tunnel of Heegaard distance

at least 6, then it is the unique tunnel of K

2. (1,1)-knots with 2 tunnels— the upper and

lower semisimple tunnels (these may be equiv-

alent by a symmetry)

— Actually I don’t know a fully proven exam-

ple, but we expect that this is the generic case

for (1,1)-knots
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3. (1,1)-knots with two (1,1)-positions, and

hence as many as 4 semisimple tunnels

— Examples include 2-bridge knots and the

(−2,3,7)-pretzel knot

4. (1,1)-knots which have two semisimple tun-

nels and one regular tunnel

— Torus knots have (at most) three tunnels,

2 semisimples from the (1,1)-position and a

third “middle” tunnel which is regular (except

for certain cases where it is equivalent to one

of the semisimple tunnels)
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H. Goda and C. Hayashi recently found another

example of a knot having both 2 semisimple

tunnels and one regular tunnel. It is the Morimoto-

Sakuma-Yokota (5,7,2)-knot, shown here with

its regular tunnel:
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As explained in the preprint of Goda and Hayashi,

this knot can be contructed by taking a (3,−4)

torus knot and a (2,−3) torus knot on cocen-

tric tori and connecting them with half-twist.

The regular tunnel goes horizontally between

the half-twisted strands:
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We understand the cabling sequence of the

Goda-Hayashi example, and know exactly which

pairs of torus knots can go on the two levels

to obtain similar examples.

There is a way to iterate the construction to

get examples with more than two levels, still in

a (1,1)-position, having 2 semisimple tunnels

and one regular tunnel.

We are currently studying these constructions,

which we call collectively Goda-Hayashi con-

structions.
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Here is a conjectural picture of knots with more

than one tunnel— it is a very aggressive con-

jecture, since it is based mainly on the lack of

counterexamples:

Conjecture: A tunnel number 1 knot K has at

most 4 tunnels, and satisfies one of the follow-

ing, allowing some of the tunnels to be equiv-

alent due to symmetries:

1. K has a unique regular tunnel.

2. K has one (1,1)-position and 2 semisimple

tunnels.

3. K has two (1,1)-positions and 4 semisimple

tunnels.

4. K is a torus knot or a knot obtained by a

Goda-Hayashi construction, and has 2 semisim-

ple tunnels and 1 regular tunnel.
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