
Disk complexes, arc
complexes, and knots

Darryl McCullough

University of Oklahoma

William Rowan Hamilton Geometry

and Topology Workshop

Trinity College

August 28, 2008

1



Topics:

I. The tree of knot tunnels: a classification of

all tunnels of all tunnel number 1 knots (or

equivalently of all genus-2 Heegaard split-

tings of exteriors of knots in S3), using the

disk complex of the genus-2 handlebody

(joint with Sangbum Cho).

II. Depth and bridge numbers: the “depth”

invariant obtained from the classification,

and its application to bridge numbers of

tunnel number 1 knots (joint with Sang-

bum Cho).

III. Level position of knots: a new application

of arc complexes to knot theory (joint with

Sangbum Cho and Arim Seo).
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The classic picture:

H

H = standard genus-2 handlebody in S3

a tunnel of a tunnel number 1 knot

(up to o. p. homeomorphism)

= a genus-2 Heegaard splitting

of a knot exterior

(up to o. p. homeomorphism)
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H

τ

Under an isotopy moving the neighborhood of

the knot and the tunnel to the standard han-

dlebody H, the cocore disk of the tunnel moves

to a disk τ in H.

τ is well-defined up to a homeomorphism of H
that results from moving H by isotopy through

S3 and back to its standard position.

The group of such homeomorphisms of H is

called the (genus-2) Goeritz group G.

(G equals the group of isotopy classes of orient-

ation-preserving homeomorphisms of H that

extend to S3.)
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We can use this viewpoint to describe all the

tunnels of tunnel number 1 knots, using the

complex D(H) of nonseparating disks in H.

D(H) looks like this, with countably many 2-

simplices meeting at each edge:

and it deformation retracts to the tree T shown

in this figure.

Each white vertex of T is a triple of nonsepa-

rating disks, and each black vertex is a pair.
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S. Cho’s work on G (building on prior work of

M. Scharlemann and E. Akbas) enables one to

understand the action of the Goeritz group on

D(H), and to work out the quotient D(H)/G:

Each of the vertices that is the image of a ver-

tex of D(H) is a tunnel of some tunnel number

1 knot.

The combinatorial structure of D(H)/G is re-

flected in the topology of the corresponding

knot tunnels.
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Here is an example. The triple θ0 is the triple

of standard disks {π0, π1, π}, and the comple-

mentary knots Kπ, Kπ0, and Kπ1 are trivial.

Removing π moves us to the vertex µ0 = {π0, π1}.
Adding τ0 moves us to the vertex µ0 ∪ {τ0}.
The complementary knot Kτ0 is a trefoil and

τ0 represents its unique tunnel.
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Continuing through the tree gives another step

in this process:
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In short, a cabling construction is: Take one

of the arcs of the knot and the tunnel arc, and

attach the four ends using a rational tangle in

a neighborhood of the other arc of the knot.
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At the third and subsequent steps, the choice

of which arc of the knot is kept and which is

discarded affects the result. This is reflected

in the fact that there are two ways to continue

out of a white vertex:

π 1 π 0

τ1

1µ

τ0

π

µ0

0θ

Since T/G is a tree, every tunnel can be ob-

tained by starting from the tunnel of the triv-

ial knot and performing a unique sequence of

cabling constructions.
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The path in T/G that encodes this unique se-
quence of cablings is called the principal path
of τ , shown here for a more complicated tun-
nel:

θ
πµ

τρ

λ

0
0

0

The last vertex {λ, ρ, τ} of the principal path is
important, and is called the principal vertex.

10



A cabling operation is described by two items

of information:

1. 1. A binary invariant si that tells which arc

of K is kept and which is replaced by the

rational tangle. These invariants are ex-

pressible in terms of the left-and-right turn

sequence of the principal path.

2. 2. A rational “slope” parameter that tells

which rational tangle to use.

m = 5/2m =  −3

The slope of the final cabling operation is (up

to details of definition) the tunnel invariant dis-

covered by M. Scharlemann and A. Thompson.
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As an example, two-bridge knots are classified

by a rational number (modulo Z) whose recip-

rocal is given by the continued fraction with

coefficients equal to the number of half-twists

in the position shown here:

12a
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12b

nb

12a nb

2b1

22a

bn
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+
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+

+
1
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[ 2an , ]

The tunnels shown here are called the “up-

per” or “lower” tunnels of the 2-bridge knot.

They are the tunnels that are obtained from

the trivial knot by a single cabling operation.

For technical reasons, the first slope parameter

is only well-defined in Q/Z, and not surprisingly

it is essentially the standard invariant that clas-

sifies the 2-bridge knot.
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The other tunnels of 2-bridge knots were clas-

sified by T. Kobayashi, K. Morimoto, and M.

Sakuma. Besides the upper and lower tunnels,

there are (at most) two other tunnels, shown

here:

12a

2b1

22a

bn
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In the cabling sequence of these other tunnels,

each cabling adds one full twist to the middle

two strands, but an arbitrary number of half-

twists to the left two strands:

These have slopes of the form ±2 +
1

k
, where

k is related to the number of right-hand half-

twists of the left two strands, and the calcula-

tion of the sign is complicated.
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We wrote a program that takes the rational

classifying invariant of the 2-bridge knot, and

produces the slope parameters of the cablings

in the cabling sequence of these other tunnels.

TwoBridge> slopes (33/19)

[ 1/3 ], 3, 5/3

TwoBridge> slopes (64793/31710)

[ 2/3 ], -3/2, 3, 3, 3, 3, 3, 7/3, 3, 3, 3, 3, 49/24

TwoBridge> slopes (3860981/2689048)

[ 13/27 ], 3, 3, 3, 5/3, 3, 7/3, 15/8, -5/3, -1, -3

TwoBridge> slopes (5272967/2616517)

[ 5/9 ], 11/5, 21/10, -23/11, -131/66

We also have calculated the invariants for all

the tunnels of torus knots (Boileau-Rost-Zieschang

and Moriah classified the tunnels of torus knots,

for most cases there are three tunnels).
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Some of the applications of our theory use a

tunnel invariant called the depth of the tunnel.

The depth of τ is the distance in the 1-skeleton

of D(H)/G from the trivial tunnel π0 to τ .

The tunnel that we saw earlier has depth 5:

θ
πµ

τ

0
0

0
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The depth-1 tunnels are exactly the type usu-

ally called (1,1)-tunnels.

Their associated knots can be put into 1-bridge

position with respect to a torus × I (genus-1

1-bridge position). A (1,1)-tunnel for a (1,1)-

knot looks like this with respect to some (1,1)-

position:

τ

π0

τ together with one of the arcs of the knot

is an unknotted circle in S3, so τ is disjoint

from a trivial tunnel π0, i. e. τ has depth 1.

Conversely, it can be shown that every depth-

1 tunnel is a (1,1)-tunnel.
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A powerful result about tunnels is the Tunnel

Leveling Theorem of H. Goda-M. Scharlemann-

A. Thompson. Roughly speaking, it says that

a tunnel arc of a tunnel number 1 knot can be

moved to lie in a level sphere of some mini-

mal bridge position of the knot. Here is the

picture, where {λ, ρ, τ} is the principal vertex

of τ :

ρ
τ

λ

There is another configuration that only occurs

for depth 1 tunnels, and for simplicity we will

omit it from the discussion.
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The knots whose tunnels are λ and ρ appear

in this picture:

ρ

ρ
τ

λ

λ

K K
λ ρ

Thus

br(Kλ) + br(Kρ) ≤ br(Kτ) ,

which was observed and used by Goda, Scharle-

mann, and Thompson.
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Using our cabling theory, we can prove the fol-

lowing Tunnel Leveling Addendum: When Kτ

has depth at least 2,

br(Kλ) + br(Kρ) = br(Kτ) .

(When Kτ has depth 1, so that its principal

vertex is {π0, ρ, τ}, the result is that

br(Kρ) ≤ br(Kτ) ≤ br(Kρ) + 1 .)

The basic idea is that one can perform cabling

so as to be “efficient” with respect to bridge

number, as seen in the following picture:

ρ
τ

λ

τ

τ
ρ

τ
ρ
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Thus, for example, the “path of cheapest de-

scent,” i. e. the principal path for which the

depth grows fastest relative to the bridge num-

bers, is:

6

14

34

58

24

10

4

22

From this one can easily work out the minimum

bridge number of a tunnel of depth d.

21



Theorem 1 For d ≥ 1, the minimum bridge

number of a knot having a tunnel of depth d is

given recursively by ad, where a1 = 2, a2 = 4,

and ad = 2ad−1 + ad−2 for d ≥ 3. Explicitly,

ad =
(1 +

√
2)d

√
2

− (1 −
√

2)d
√

2

and consequently lim
d→∞

ad − (1+
√

2)d
√

2
= 0.

There is also a maximum bridge number the-

orem, in terms of the number of cablings:

Theorem 2 Let (F1, F2, . . .) be the Fibonacci

sequence (1,1,2,3, . . .). The maximum bridge

number of any tunnel number 1-knot having a

tunnel produced by n cabling operations is Fn+2.
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Another measure of complexity for a tunnel

has been studied by J. Johnson, A. Thompson,

Y. Minsky-Y. Moriah-S. Schleimer, and others:

The (Hempel) distance dist(τ) is the distance

in the curve complex C(∂H) from ∂τ to a loop

that bounds a disk in S3 − H.

Distance is related to depth by dist(τ) − 1 ≤
depth(τ). But depth is a finer invariant than

distance:

The “middle” tunnels of torus knots all have

Hempel distance 2, but their depths can be

arbitrarily large (the depth of the middle tun-

nel of the (p, q)-torus knot is approximately the

number of terms in the continued fraction ex-

pansion of p/q).
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The disk complex imbeds in the curve complex

C(∂H), by taking each D to ∂D. Here is a
schematic picture:

D(H)

D(S  −  H)3

π
0

distance

depth

6

2

stable region

The “stable region” is the region of tunnels of
distance at least 6. J. Johnson, using results of

M. Scharlemann and M. Tomova, proved that

Theorem 3 If K has a tunnel of distance at

least 6, then this tunnel is the unique tunnel

of K up to isotopy.
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A few words about knots of tunnel number

≥ 2, i. e. genus-(≥ 3) Heegaard splittings of

knot exteriors:

The analogous theory for knots of tunnel num-

ber larger than 1 would involve the disk com-

plexes of higher genus handlebodies. For genus

g, the disk complex is (3g − 4)-dimensional

(same as the curve complex). Although higher-

genus disk complexes are contractible, their

structures seem much more difficult to under-

stand than for the genus-2 case.

For genus ≥ 3, it has not even been proven

that the Goeritz group is finitely generated. A

conjectural finite presentation has been given,

and two proofs have been published, both in-

correct.
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A new application of complexes to knot theory:

level position and arc distance.

A knot K in S3 is said to be in genus-g 1-bridge

position with respect to a genus-g Heegaard

splitting V ∪ W of S3 if each of K ∩ V and

K ∩ W is a single arc that is parallel into the

surface F = ∂V = ∂W .
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In a collar F × [0,1] ⊂ W of F in W , take n

parallel copies of the form F × {t} and tube

them together with n − 1 unknotted tubes to

obtain a surface G of genus gn in F ×[0,1]. We

say that K lies in n-level position with respect

to G if K ⊂ G, and moreover K meets each of

the n−1 tubes in two arcs, each arc connecting

the two ends of the tube.

Examples of level position appeared in work

of M. Eudave-Muñoz, who used it to obtain

closed incompressible surfaces in the comple-

ments of (1,1)-knots.
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Every 1-bridge position of K is isotopic keeping

K ∩ V in V and K ∩ W in W into some n-level

position. The minimum such n is an invariant

of the 1-bridge position, called the level num-

ber. Of course, for a knot having a genus-g

1-bridge position, the minimum level number

over all 1-bridge positions is an invariant of the

knot.

This figure shows that the torus level number

of the figure-8 knot is at most 2, and hence

equals 2 since the figure-8 knot is not a torus

knot.
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For a knot K in 1-bridge position, let x, y ∈ F

be the two points of K ∩ F .

An arc σV in F from x to y is a shadow of K∩V

if K ∩ V is isotopic in V , relative to {x, y}, to

σV . A shadow σW of K∩W is defined similarly.

Each shadow is a point of the arc complex

A(F) whose vertices are isotopy classes of arcs

in F connecting x and y. It is known that A(F)

is connected, so we can define an invariant of

the 1-bridge position by

distF (K) = min{dist(σV , σW)}

over all pairs of shadows of K ∩ V and K ∩ W .

Of course, we can define the (genus-g) arc

distance of K, denoted by dist(K), to be the

minimum of distF (K) over all genus-g 1-bridge

positions of K.
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The trivial knot is the only knot of distance 0.

A knot has torus distance 1 if and only if it is

nontrivial torus knot.

This figure shows that the arc distance of the

figure-8 knot is at most 2, and hence is 2 since

the figure-8 knot is not a torus knot:

s
′

s
′′

s
′

s

s
′′

s

k

k
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Theorem 4 The level number of a 1-bridge

position equals its arc distance.

That is, K is isotopic (keeping K ∩V in V and

K ∩ W in W ) into n-level position if and only

if distF (K) ≤ n.

The theorem is not very hard to prove, but

what is perhaps noteworthy is that it assigns a

simple geometric interpretation to every pos-

sible distance.
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The idea of the proof:

Suppose K is in n-level position. Look at these

dashed arcs drawn in the tubes.

Move the knot by an isotopy that shrinks its

two arcs in the second level.
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The second dotted arc is stretched out to an

arc with endpoints {x, y}, and disjoint from the

first dotted arc.

Repeat this process on each intermediate level,

ending up with n − 1 arcs which form a path

between two shadows. So distF (K) ≤ n.

The other direction— a path of length n in

the arc complex gives an n-level position— is

essentially a matter of reversing this process.
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There is probably more to be done with this

idea. Like disk complexes, arc complexes tend

to be easier to understand than curve com-

plexes.

We are currently working on (1,1)-knots by

regarding them as braids of two points in the

torus, a viewpoint already used by Choi and

Ko. In work in progress, we have methods

to calculate the cabling slope invariants and

the level number in terms of a braid word that

describes the (1,1)-knot.
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