Diffeomorphisms and Heegaard splittings of 3-manifolds

Hyamfest

Melbourne, July 2011

Some philosophy

Adding geometric structure tends to restrict automorphisms.

But adding symmetry tends to create automorphisms.

Notation: isom (S^2) = connected component of 1_{S^2} in Isom (S^2) , similarly for diff $(M) \subseteq \text{Diff}(M)$.

An example

By Perelman's Geometrization Theorem, a closed 3manifold with finite fundamental group is of the form S^3/G , with $G \subset SO(4)$ acting freely. Consequently, such a manifold has Riemannian metrics of constant positive curvature.

We call these manifolds *elliptic* 3-manifolds.

M (2002): Calculated Isom(M) for all elliptics.

- This is "folklore". Hyam and others understood the $\operatorname{Isom}(S^3/G)$ decades ago.
- $\operatorname{Isom}(S^3/G) = \operatorname{Norm}(G)/G$, where G is the normalizer of G in $\operatorname{Isom}(S^3) = O(4)$.
- Compute $\operatorname{Norm}(G)/G$ using the quaternionic description of SO(4):

 $S^3 =$ unit quaternions,

$$\mathrm{SO}(4) = (S^3 \times S^3) / \langle (-1, -1) \rangle$$

L(m,q)	$\operatorname{Isom}(L(m,q))$	$\dim(\operatorname{Isom}(L(m,q)))$
$L(1,0) = S^3$	O(4)	6
$L(2,1) = \mathbb{RP}(3)$	$(\mathrm{SO}(3) \times \mathrm{SO}(3)) \circ C_2$	6
L(m, 1), m odd, m > 2	$O(2)^* \ \widetilde{\times} \ S^3$	4
L(m, 1), m even, $m > 2$	$O(2) \times SO(3)$	4
$L(m,q), 1 < q < m/2, q^2 \not\equiv \pm 1 \mod m$	$\operatorname{Dih}(S^1 \times S^1)$	2
$L(m,q), 1 < q < m/2, q^2 \equiv -1 \bmod m$	$(S^1 \stackrel{\sim}{\times} S^1) \circ C_4$	2
$L(m,q), 1 < q < m/2, q^2 \equiv 1 \mod m,$ gcd(m,q+1) gcd(m,q-1) = m	$O(2) \stackrel{\sim}{\times} O(2)$	2
$L(m,q), 1 < q < m/2, q^2 \equiv 1 \mod m,$ gcd(m,q+1) gcd(m,q-1) = 2m	$O(2) \times O(2)$	2

Table 1: Isometry groups of L(m,q)

G	M	$\operatorname{Isom}(M)$	$\dim(\operatorname{Isom}(M))$
Q_8	quaternionic	$SO(3) \times S_3$	3
$Q_8 \times C_n$	quaternionic	$O(2) \times S_3$	1
D_{4m}^*	prism	$SO(3) \times C_2$	3
$D_{4m}^* \times C_n$	prism	$O(2) \times C_2$	1
index 2 diagonal	prism	$O(2) \times C_2$	1
T_{24}^{*}	tetrahedral	$SO(3) \times C_2$	3
$T_{24}^* \times C_n$	tetrahedral	$O(2) \times C_2$	1
index 3 diagonal	tetrahedral	O(2)	1
O_{48}^{*}	octahedral	SO(3)	3
$O_{48}^* \times C_n$	octahedral	O(2)	1
I_{120}^*	icosahedral	SO(3)	3
$I_{120}^* \times C_n$	icosahedral	O(2)	1

Table 2: Isometry groups of elliptic 3-manifolds other than ${\cal L}(m,q)$

For reducible 3-manifolds, the gap between $\operatorname{isom}(M)$ and $\operatorname{diff}(M)$ tends to be large: For most reducible M, $\operatorname{isom}(M) = \{1\}$ for any metric, while $\pi_1(\operatorname{diff}(M))$ is not finitely generated (Kalliongis-M 1996)

But for an irreducible 3-manifold with a metric of "maximal" symmetry, we often see a close connection between $\operatorname{isom}(M)$ and $\operatorname{diff}(M)$, and sometimes even $\operatorname{Isom}(M)$ and $\operatorname{Diff}(M)$.

Let's start with dimension 1:

 $\operatorname{Isom}(S^1) = \operatorname{O}(2) \hookrightarrow \operatorname{Diff}(S^1)$ is a homotopy equivalence.

- The subspace of orientation-preserving diffeomorphisms that take the basepoint 1 to a given point p canonically deformation retracts to the unique rotation that rotates 1 to p (a straight-line homotopy between lifts to the universal cover \mathbb{R} is an equivariant isotopy, so defines a canonical isotopy on S^1).
- Similarly the orientation-reversing diffeomorphisms taking 1 to p canonically deformation retract to the reflection taking 1 to p.
- These deformation retractions all fit together continuously to give a deformation retraction of all of $\text{Diff}(S^1)$ to O(2).

This tells us the *homeomorphism* type of $\text{Diff}(S^1)$ with the C^{∞} -topology:

- With the C^{∞} -topology, Diff(M) is a separable Fréchet manifold (locally \mathbb{R}^{∞}) for any closed M.
- $-\operatorname{Diff}(S^1) \simeq \operatorname{O}(2) \simeq \operatorname{O}(2) \times \mathbb{R}^{\infty}.$
- Homotopy equivalent (infinite-dimensional) separable Fréchet manifolds are homeomorphic, so $\text{Diff}(S^1) \approx O(2) \times \mathbb{R}^{\infty}$.

What about *isomorphism?* If Diff(M) and Diff(N) are atstractly isomorphic, then M is diffeomorphic to N (Filipkiewicz, 1982).

- The hard part of the argument is to show that an isomorphism from Diff(M) to Diff(N) takes the point stabilizer subgroups Diff(M, x) to point stabilizer subgroups of Diff(N).
- In this way an isomorphism from Diff(M) to Diff(N)gives a bijective correspondence between the points of M and those of N.
- This correspondence turns out to be a diffeomorphism.

The Smale Conjecture

S. Smale (1959): $\operatorname{Isom}(S^2) = O(3) \hookrightarrow \operatorname{Diff}(S^2)$ is a homotopy equivalence (so $\operatorname{Diff}(S^2) \approx O(3) \times \mathbb{R}^{\infty}$). Smale conjectured that $\operatorname{Isom}(S^3) = O(4) \hookrightarrow \operatorname{Diff}(S^3)$ is a homotopy equivalence.

This was proven by J. Cerf and A. Hatcher:

- Cerf (1968): $\pi_0(\text{Isom}(S^3)) \to \pi_0(\text{Diff}(S^3))$ is an isomorphism (the " π_0 -part" of the conjecture).
- Hatcher (1983): $\pi_q(\text{Isom}(S^3)) \to \pi_q(\text{Diff}(S^3))$ is an isomorphism for all $q \ge 1$.

Terminology: A (Riemannian) manifold M satisfies the Smale Conjecture (SC) if $\text{Isom}(M) \hookrightarrow \text{Diff}(M)$ is a homotopy equivalence.

M satisfies the weak Smale Conjecture (WSC) if isom $(M) \hookrightarrow diff(M)$ is a homotopy equivalence.

The case of infinite fundamental group

1. Hatcher, N. Ivanov (independently, late 1970's): Haken manifolds satisfy the WSC.

Key ideas in the proofs:

— Let $F^2 \hookrightarrow M$ be incompressible. Use the *Cerf-Palais* fibration:

$$\begin{array}{lll} \operatorname{Diff}(M \ \mathrm{rel} \ F) \subset \operatorname{Diff}(M) & f \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\$$

to relate Diff(M) to embeddings of F into M.

— Analyze parameterized families of embeddings of Finto M. Show that the components of $\operatorname{Emb}(F, M)$ are contractible, deduce that $\operatorname{diff}(M \operatorname{rel} F) \hookrightarrow \operatorname{diff}(M \operatorname{rel} \partial M)$ is a homotopy

equivalence.

— This eventually reduces the result to knowing that $\text{Diff}(B^3 \text{ rel } \partial B^3)$ is contractible, which is equivalent to the SC for S^3 .

In general, Haken manifolds do not satisfy the SC: $\pi_0(\text{Isom}(M))$ is finite, but $\pi_0(\text{Diff}(M))$ can be infinite.

- 2. D. Gabai (2001): SC for hyperbolic 3-manifolds. 3. M-T. Soma (2010): SC for non-Haken M with $\widetilde{PSL}(2, \mathbb{R})$ -geometry.
- The proof utilizes Gabai's methodology.
- Hyam had the idea of how to do this years earlier.
- 4. Conjecture: SC for non-Haken M with Nil geometry.

The case of finite fundamental group

1. Ivanov (around 1980): Adapted the Hatcher-Ivanov method to some of the elliptic M that contain a *one-sided* geometrically incompressible Klein bottle, to prove SC for many of the prism manifolds (Seifert-fibered over S^2 with 2, 2, n cone points) and announced the result for the lens spaces $L(4n, 2n - 1), n \geq 2$.

2. M-Rubinstein (starting in 1980's): Extended Ivanov's method to all elliptic M containing one-sided Klein bottles, except for L(4, 1). This includes all prism manifolds and all $L(4n, 2n - 1), n \ge 2$.

A key ingredient is a Cerf-Palais fibration $\operatorname{Diff}_f(M) \to \operatorname{Emb}_f(K, M)$, where the "f" subscript indicates the fiber-preserving diffeomorphisms for a Seifert fibering of M. This "folklore" theorem took a lot of effort to prove (Kalliongis-M).

3. M (2002): For elliptic M, $\text{Isom}(M) \to \text{Diff}(M)$ is a bijection on path components.

- The proof uses the calculation of Isom(M) and applies many people's results on $\pi_0(\text{Diff}(M))$ to establish that $\pi_0(\text{Isom}(M)) \to \pi_0(\text{Diff}(M))$ is an isomorphism.
- This is the " π_0 -part" of the SC for all elliptic 3manifolds. It reduces the SC to the WSC.

4. Hong-M-Rubinstein (2000's): SC for all lens spaces (except $L(2,1) = \mathbb{RP}^3$).

The proof is unfortunately very long and technical. The key ideas:

— By M (2002), it suffices to prove the WSC for L. For this it suffices to prove that

 $\pi_q(\operatorname{isom}(L)) \to \pi_q(\operatorname{diff}(L))$

is an isomorphism for all $q \ge 1$.

— For a certain Seifert fibering of L, every isometry is fiber-preserving (this fails for L = L(2, 1)), so

 $\operatorname{isom}(L) \subset \operatorname{diff}_f(L) \subset \operatorname{diff}(L)$.

It's not too hard to prove that

 $\pi_q(\operatorname{isom}(L)) \to \pi_q(\operatorname{diff}_f(L))$ is an isomorphism, so it remains to prove that $\pi_q(\operatorname{diff}_f(L)) \to \pi_q(\operatorname{diff}(L))$ is an isomorphism.

— This reduces the problem to proving that all $\pi_q(\operatorname{diff}(L), \operatorname{diff}_f(L))$ are zero. An element of $\pi_q(\operatorname{diff}(L), \operatorname{diff}_f(L))$ is represented by a *q*-dimensional parameterized family of diffeomorphisms g_t of L, where $t \in D^q$ and g_t is fiber-preserving for $t \in \partial D^q$. The task is to deform the family to make all the g_t fiber-preserving.

- Fix a sweepout of L having Heegaard tori as the generic levels, each a union of fibers. Look at how their images under the g_t meet the fixed levels. Using singularity theory, we can perturb the g_t so that the tangencies are nice enough to have a version of the Rubinstein-Scharlemann graphic (this step is hard).
- From those Rubinstein-Scharlemann graphics, we can deduce that for each t there is a nice image torus level— an image level that meets some fixed level so that neither torus contains a meridian disk in a complementary solid torus of the other.
- By a lot of careful isotopy of the g_t , we can level (or at least "straighten out") their individual nice image levels, then all image levels, then make the g_t fiberpreserving.

M-Rubinstein, Kalliongis-M, and Hong-M-Rubinstein are all written up in a preprint monograph *Diffeomorphisms* of *Elliptic 3-Manifolds*.

Remark: No one has been able to use Perelman's ideas to make any progress on the Smale Conjecture for elliptic 3-manifolds. Heegaard splittings (joint with Jesse Johnson)

Isotopy classes of Heegaard splittings have been extensively studied. These are actually the path components of a *space of Heegaard splittings*.

For a Heegaard splitting (M, Σ) of a closed (orientable) 3-manifold M, write $\text{Diff}(M, \Sigma)$ for the subgroup of Diff(M) consisting of the f such that $f(\Sigma) = \Sigma$.

Define the space of Heegaard splittings equivalent to (M, Σ) to be the space of cosets

 $\mathcal{H}(M,\Sigma) = \operatorname{Diff}(M) / \operatorname{Diff}(M,\Sigma)$.

- A point in $\mathcal{H}(M, \Sigma)$ represents a coordinate-free image of Σ in M under a diffeomorphism of M. For two diffeomorphisms $f, g \in \text{Diff}(M)$ satisfy $f(\Sigma) = g(\Sigma)$ exactly when $g^{-1}f(\Sigma) = \Sigma$, that is, when f and grepresent the same coset in $\text{Diff}(M)/\text{Diff}(M, \Sigma)$.
- A path in $\mathcal{H}(M, \Sigma)$ is a movie of Σ moving around in M. A loop is when it returns to its starting position, although its points may have shifted around as it moved.

- A correct intuitive guess is that $\mathcal{H}(S^3, S^2) \simeq \mathbb{RP}^3$:
- $-\mathcal{H}(S^3, S^2)$ is the space of positions of S^2 in S^3 .
- The SC for S^3 says that it should be enough to consider "orthogonal" positions, that is, images of the "equatorial" S^2 under isometries of S^3 . Such images correspond to their pairs of antipodal "poles," which are arbitrary pairs of antipodal points. The space of such pairs is \mathbb{RP}^3 .

In general, what is the homotopy type of $\mathcal{H}(M, \Sigma)$?

Since $\mathcal{H}(M, \Sigma)$ is closely related to Diff(M), we expect its homotopy type to be highly affected by that of Diff(M).

Notation: Write $\mathcal{H}_q(M, \Sigma)$ for $\pi_q(\mathcal{H}(M, \Sigma))$. Notice that there is a natural homomorphism

$$\pi_q(\operatorname{Diff}(M)) \to \mathcal{H}_q(M, \Sigma)$$
.

Theorem 1 Suppose that Σ has genus at least 2. Then $\pi_q(\text{Diff}(M)) \to \mathcal{H}_q(M, \Sigma)$ is an isomorphism for $q \geq 2$, and there are exact sequences

 $1 \to \pi_1(\operatorname{Diff}(M)) \to \mathcal{H}_1(M,\Sigma) \to \mathcal{G}(M,\Sigma) \to 1$,

$$1 \to \mathcal{G}(M, \Sigma) \to \pi_0(\mathrm{Diff}(M, \Sigma)) \to \\\pi_0(\mathrm{Diff}(M)) \to \mathcal{H}_0(M, \Sigma) \to 1$$

Here, $\mathcal{G}(M, \Sigma)$ is the *Goeritz group* of the Heegaard splitting, defined to be the kernel of $\pi_0(\text{Diff}(M, \Sigma)) \rightarrow \pi_0(\text{Diff}(M))$.

Idea of the proof: Use the Cerf-Palais methodology to prove that $\operatorname{Diff}(M) \to \operatorname{Diff}(M)/\operatorname{Diff}(M,\Sigma)$ is a fibration. The fiber is $\operatorname{Diff}(M,\Sigma)$, giving a long exact sequence

$$\cdots \to \pi_q(\operatorname{Diff}(M, \Sigma)) \to \pi_q(\operatorname{Diff}(M)) \to \mathcal{H}_q(M, \Sigma)$$
$$\to \pi_{q-1}(\operatorname{Diff}(M, \Sigma)) \to \pi_{q-1}(\operatorname{Diff}(M)) \to \cdots$$

Since the genus of Σ is at least 2, $\pi_q(\text{Diff}(M, \Sigma)) = 0$ for $q \ge 2$.

For most reducible M, $\pi_1(\text{Diff}(M))$ is known to be nonfinitely-generated (Kalliongis-M, 1996), suggesting that $\mathcal{H}(M, \Sigma)$ has a complicated homotopy type in these cases. Theorem 1 has some nice applications:

Corollary 2 Suppose that M is irreducible and $\pi_1(M)$ is infinite, and that M is not non-Haken with the Nil geometry. Then $\mathcal{H}_i(M, \Sigma) = 0$ for $i \geq 2$, and there is an exact sequence

 $1 \to \operatorname{center}(\pi_1(M)) \to \mathcal{H}_1(M, \Sigma) \to \mathcal{G}(M, \Sigma) \to 1$.

Consequently for these (M, Σ) :

- (a) Each component of $\mathcal{H}(M, \Sigma)$ is aspherical.
- (b) If $\pi_1(M)$ is centerless, then $\mathcal{H}(M, \Sigma)$ is a $K(\mathcal{G}(M, \Sigma), 1)$ -space.

Corollary 3 If the Hempel distance $d(M, \Sigma) > 3$, then $\mathcal{H}(M, \Sigma)$ has finitely many components, each of which is contractible. If $d(M, \Sigma) > 2 \operatorname{genus}(\Sigma)$, then $\mathcal{H}(M, \Sigma)$ is contractible.

The proof of Corollary 3 uses results of J. Hempel, J. Johnson, and A. Thompson.

For elliptic 3-manifolds, the homotopy type of $\mathcal{H}(M, \Sigma)$ is, as expected, more complicated and more difficult to calculate. But provided that the manifold satisfies the SC, we can utilize information coming from the quaternionic calculation of Isom(M) to obtain a good description of $\mathcal{H}(M, \Sigma)$.

For the 3-sphere:

Theorem 4 For $n \ge 0$ let Σ_n be the unique Heegaard surface of genus n in S^3 .

- 1. $\mathcal{H}(S^3, \Sigma_0) \simeq \mathbb{RP}^3$.
- 2. $\mathcal{H}(S^3, \Sigma_1) \simeq \mathbb{RP}^2 \times \mathbb{RP}^2$.
- 3. For $n \ge 2$, $\mathcal{H}_i(S^3, \Sigma_n) \cong \pi_i(S^3 \times S^3)$ for $i \ge 2$, and there is an non-split exact sequence

 $1 \to C_2 \to \mathcal{H}_1(S^3, \Sigma_n) \to \mathcal{G}(S^3, \Sigma_n) \to 1$

where C_2 is the cyclic group of order 2.

For lens spaces:

Theorem 5 Let L = L(m,q) be a lens space with $m \ge 2$ and $1 \le q \le m/2$. If L = L(2,1), assume that L satisfies the Smale Conjecture. For $n \ge 1$, let Σ_n be the unique Heegaard surface of genus n in L.

3. If
$$L = L(2, 1)$$
, then
(a) $\mathcal{H}(L, \Sigma_1) \simeq \mathbb{RP}^2 \times \mathbb{RP}^2$.
(b) For $n \ge 2$, $\mathcal{H}_i(L, \Sigma_n) \cong \pi_i(S^3 \times S^3)$ for $i \ge 2$,
and there is an exact sequence
 $1 \to C_2 \times C_2 \to \mathcal{H}_1(L, \Sigma_n) \to \mathcal{G}(L, \Sigma_n) \to 1$.

For the other elliptic 3-manifolds:

Theorem 6 Let E be an elliptic 3-manifold, but not S^3 or a lens space. Assume, if necessary, that E satisfies the Smale Conjecture. Let Σ be a Heegaard surface in E.

1. If $\pi_1(E) \cong D_{4m}^*$, or if E is one of the three manifolds with fundamental group either T_{24}^* , O_{48}^* , or I_{120}^* , then $\mathcal{H}_i(E, \Sigma) \cong \pi_i(S^3)$ for $i \ge 2$ and there is an exact sequence

 $1 \to C_2 \to \mathcal{H}_1(E, \Sigma) \to \mathcal{G}(E, \Sigma) \to 1$.

2. If E is not one of the manifolds in Case (1), that is, either $\pi_1(E)$ has a nontrivial cyclic direct factor, or $\pi_1(E)$ is a diagonal subgroup of index 2 in $D_{4m}^* \times C_n$ or of index 3 in $T_{48}^* \times C_n$, then $\mathcal{H}_i(E, \Sigma) = 0$ for $i \geq 2$, and there is an exact sequence

$$1 \to \mathbb{Z} \to \mathcal{H}_1(E, \Sigma) \to \mathcal{G}(E, \Sigma) \to 1$$
.