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Some philosophy

Adding geometric structure tends to restrict automor-

phisms.
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But adding symmetry tends to create automorphisms.

Notation: isom(S2) = connected component of 1S2 in
Isom(S2), similarly for diff(M) ⊆ Diff(M).

metric isom(S2)

random {1}

ellipsoid S1 = SO(2)

round SO(3)
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An example

By Perelman’s Geometrization Theorem, a closed 3-
manifold with finite fundamental group is of the form
S3/G, with G ⊂ SO(4) acting freely. Consequently, such
a manifold has Riemannian metrics of constant positive
curvature.

We call these manifolds elliptic 3-manifolds.

M (2002): Calculated Isom(M) for all elliptics.

— This is “folklore”. Hyam and others understood the
Isom(S3/G) decades ago.

— Isom(S3/G) = Norm(G)/G, where G is the normal-
izer of G in Isom(S3) = O(4).

— Compute Norm(G)/G using the quaternionic descrip-
tion of SO(4):

S3 = unit quaternions,

SO(4) = (S3 × S3)/〈(−1,−1)〉
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L(m, q) Isom(L(m, q)) dim(Isom(L(m, q)))

L(1, 0) = S3 O(4) 6

L(2, 1) = RP(3) (SO(3)× SO(3)) ◦ C2 6

L(m, 1), m odd, m > 2 O(2)∗ ×̃ S3 4

L(m, 1), m even, m > 2 O(2)× SO(3) 4

L(m, q), 1 < q < m/2, q2 6≡ ±1 mod m Dih(S1 × S1) 2

L(m, q), 1 < q < m/2, q2 ≡ −1 mod m (S1 ×̃ S1) ◦ C4 2

L(m, q), 1 < q < m/2, q2 ≡ 1 mod m,
gcd(m, q + 1) gcd(m, q − 1) = m

O(2) ×̃ O(2) 2

L(m, q), 1 < q < m/2, q2 ≡ 1 mod m,
gcd(m, q + 1) gcd(m, q − 1) = 2m

O(2)×O(2) 2

Table 1: Isometry groups of L(m, q)

G M Isom(M) dim(Isom(M))

Q8 quaternionic SO(3)× S3 3

Q8 × C
n

quaternionic O(2)× S3 1

D∗

4m
prism SO(3)× C2 3

D∗

4m
× C

n
prism O(2)× C2 1

index 2 diagonal prism O(2)× C2 1

T ∗

24
tetrahedral SO(3)× C2 3

T ∗

24
× C

n
tetrahedral O(2)× C2 1

index 3 diagonal tetrahedral O(2) 1

O∗

48
octahedral SO(3) 3

O∗

48
× C

n
octahedral O(2) 1

I∗
120

icosahedral SO(3) 3

I∗
120

× C
n

icosahedral O(2) 1

Table 2: Isometry groups of elliptic 3-manifolds other than L(m, q)
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For reducible 3-manifolds, the gap between isom(M)
and diff(M) tends to be large: For most reducible M ,
isom(M) = {1} for any metric, while π1(diff(M)) is not
finitely generated (Kalliongis-M 1996)

But for an irreducible 3-manifold with a metric of “max-
imal” symmetry, we often see a close connection between
isom(M) and diff(M), and sometimes even Isom(M) and
Diff(M).

Let’s start with dimension 1:

Isom(S1) = O(2) →֒ Diff(S1) is a homotopy equivalence.

— The subspace of orientation-preserving diffeomor-
phisms that take the basepoint 1 to a given point
p canonically deformation retracts to the unique ro-
tation that rotates 1 to p (a straight-line homotopy
between lifts to the universal cover R is an equivari-
ant isotopy, so defines a canonical isotopy on S1).

— Similarly the orientation-reversing diffeomorphisms
taking 1 to p canonically deformation retract to the
reflection taking 1 to p.

— These deformation retractions all fit together continu-
ously to give a deformation retraction of all of Diff(S1)
to O(2).
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This tells us the homeomorphism type of Diff(S1) with
the C∞-topology:

— With theC∞-topology, Diff(M) is a separable Fréchet
manifold (locally R∞) for any closed M .

— Diff(S1) ≃ O(2) ≃ O(2)× R∞.

— Homotopy equivalent (infinite-dimensional) separable
Fréchet manifolds are homeomorphic, so Diff(S1) ≈
O(2)× R∞.

What about isomorphism? If Diff(M) and Diff(N) are
atstractly isomorphic, thenM is diffeomorphic to N (Fil-
ipkiewicz, 1982).

— The hard part of the argument is to show that an iso-
morphism from Diff(M) to Diff(N) takes the point
stabilizer subgroups Diff(M,x) to point stabilizer
subgroups of Diff(N).

— In this way an isomorphism from Diff(M) to Diff(N)
gives a bijective correspondence between the points of
M and those of N .

— This correspondence turns out to be a diffeomor-
phism.
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The Smale Conjecture

S. Smale (1959): Isom(S2) = O(3) →֒ Diff(S2) is a ho-
motopy equivalence (so Diff(S2) ≈ O(3)× R∞).

Smale conjectured that Isom(S3) = O(4) →֒ Diff(S3) is
a homotopy equivalence.

This was proven by J. Cerf and A. Hatcher:

— Cerf (1968): π0(Isom(S3)) → π0(Diff(S
3)) is an iso-

morphism (the “π0-part” of the conjecture).

— Hatcher (1983): πq(Isom(S3)) → πq(Diff(S
3)) is an

isomorphism for all q ≥ 1.

Terminology: A (Riemannian) manifold M satisfies the
Smale Conjecture (SC) if Isom(M) →֒ Diff(M) is a
homotopy equivalence.

M satisfies the weak Smale Conjecture (WSC) if
isom(M) →֒ diff(M) is a homotopy equivalence.
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The case of infinite fundamental group

1. Hatcher, N. Ivanov (independently, late 1970’s):
Haken manifolds satisfy the WSC.

Key ideas in the proofs:

— Let F 2 →֒ M be incompressible. Use the Cerf-Palais
fibration:

Diff(M rel F ) ⊂ Diff(M) f

��

_

��

Emb(F,M) f |F
to relate Diff(M) to embeddings of F into M .

— Analyze parameterized families of embeddings of F
into M . Show that the components of Emb(F,M)
are contractible, deduce that
diff(M rel F ) →֒ diff(M rel ∂M) is a homotopy
equivalence.

— This eventually reduces the result to knowing that
Diff(B3 rel ∂B3) is contractible, which is equivalent
to the SC for S3.

In general, Haken manifolds do not satisfy the SC:
π0(Isom(M)) is finite, but π0(Diff(M)) can be infinite.
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2. D. Gabai (2001): SC for hyperbolic 3-manifolds.

3. M-T. Soma (2010): SC for non-Haken M with
˜PSL(2,R)-geometry.

— The proof utilizes Gabai’s methodology.

— Hyam had the idea of how to do this years earlier.

4. Conjecture: SC for non-Haken M with Nil geometry.
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The case of finite fundamental group

1. Ivanov (around 1980): Adapted the Hatcher-Ivanov
method to some of the ellipticM that contain a one-sided
geometrically incompressible Klein bottle, to prove SC
for many of the prism manifolds (Seifert-fibered over S2

with 2, 2, n cone points) and announced the result for
the lens spaces L(4n, 2n− 1), n ≥ 2.

2. M-Rubinstein (starting in 1980’s): Extended Ivanov’s
method to all elliptic M containing one-sided Klein bot-
tles, except for L(4, 1). This includes all prism manifolds
and all L(4n, 2n− 1), n ≥ 2.

A key ingredient is a Cerf-Palais fibration Difff(M) →
Embf(K,M), where the “f” subscript indicates the
fiber-preserving diffeomorphisms for a Seifert fibering
of M . This “folklore” theorem took a lot of effort to
prove (Kalliongis-M).

3. M (2002): For elliptic M , Isom(M) → Diff(M) is a
bijection on path components.

— The proof uses the calculation of Isom(M) and applies
many people’s results on π0(Diff(M)) to establish that
π0(Isom(M)) → π0(Diff(M)) is an isomorphism.

— This is the “π0-part” of the SC for all elliptic 3-
manifolds. It reduces the SC to the WSC.
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4. Hong-M-Rubinstein (2000’s): SC for all lens spaces
(except L(2, 1) = RP3).

The proof is unfortunately very long and technical. The
key ideas:

— By M (2002), it suffices to prove the WSC for L. For
this it suffices to prove that

πq(isom(L)) → πq(diff(L))

is an isomorphism for all q ≥ 1.

— For a certain Seifert fibering of L, every isometry is
fiber-preserving (this fails for L = L(2, 1)), so

isom(L) ⊂ difff(L) ⊂ diff(L) .

It’s not too hard to prove that
πq(isom(L)) → πq(difff(L)) is an isomorphism, so it
remains to prove that πq(difff(L)) → πq(diff(L)) is
an isomorphism.

— This reduces the problem to proving that all
πq(diff(L), difff(L)) are zero. An element of
πq(diff(L), difff(L)) is represented by a q-dimensional
parameterized family of diffeomorphisms gt of L,
where t ∈ Dq and gt is fiber-preserving for t ∈ ∂Dq.
The task is to deform the family to make all the gt
fiber-preserving.
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— Fix a sweepout of L having Heegaard tori as the
generic levels, each a union of fibers. Look at how
their images under the gt meet the fixed levels. Using
singularity theory, we can perturb the gt so that the
tangencies are nice enough to have a version of the
Rubinstein-Scharlemann graphic (this step is hard).

— From those Rubinstein-Scharlemann graphics, we can
deduce that for each t there is a nice image torus
level— an image level that meets some fixed level so
that neither torus contains a meridian disk in a com-
plementary solid torus of the other.

— By a lot of careful isotopy of the gt, we can level (or
at least “straighten out”) their individual nice image
levels, then all image levels, then make the gt fiber-
preserving.

M-Rubinstein, Kalliongis-M, and Hong-M-Rubinstein are
all written up in a preprint monograph Diffeomorphisms
of Elliptic 3-Manifolds.

Remark: No one has been able to use Perelman’s ideas
to make any progress on the Smale Conjecture for elliptic
3-manifolds.
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Heegaard splittings (joint with Jesse Johnson)

Isotopy classes of Heegaard splittings have been exten-
sively studied. These are actually the path components
of a space of Heegaard splittings.

For a Heegaard splitting (M,Σ) of a closed (orientable)
3-manifold M , write Diff(M,Σ) for the subgroup of
Diff(M) consisting of the f such that f(Σ) = Σ.

Define the space of Heegaard splittings equivalent to
(M,Σ) to be the space of cosets

H(M,Σ) = Diff(M)/Diff(M,Σ) .

— A point in H(M,Σ) represents a coordinate-free im-
age of Σ in M under a diffeomorphism of M . For two
diffeomorphisms f, g ∈ Diff(M) satisfy f(Σ) = g(Σ)
exactly when g−1f(Σ) = Σ, that is, when f and g
represent the same coset in Diff(M)/Diff(M,Σ).

— A path in H(M,Σ) is a movie of Σ moving around
in M . A loop is when it returns to its starting posi-
tion, although its points may have shifted around as
it moved.
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A correct intuitive guess is that H(S3, S2) ≃ RP3:

— H(S3, S2) is the space of positions of S2 in S3.

— The SC for S3 says that it should be enough to con-
sider “orthogonal” positions, that is, images of the
“equatorial” S2 under isometries of S3. Such images
correspond to their pairs of antipodal “poles,” which
are arbitrary pairs of antipodal points. The space of
such pairs is RP3.

In general, what is the homotopy type of H(M,Σ)?

SinceH(M,Σ) is closely related to Diff(M), we expect its
homotopy type to be highly affected by that of Diff(M).

Notation: WriteHq(M,Σ) for πq(H(M,Σ)). Notice that
there is a natural homomorphism

πq(Diff(M)) → Hq(M,Σ) .
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Theorem 1 Suppose that Σ has genus at least 2.
Then πq(Diff(M)) → Hq(M,Σ) is an isomorphism for
q ≥ 2, and there are exact sequences

1 → π1(Diff(M)) → H1(M,Σ) → G(M,Σ) → 1 ,

1 → G(M,Σ) → π0(Diff(M,Σ)) →

π0(Diff(M)) → H0(M,Σ) → 1 .

Here, G(M,Σ) is the Goeritz group of the Heegaard
splitting, defined to be the kernel of π0(Diff(M,Σ)) →
π0(Diff(M)).

Idea of the proof: Use the Cerf-Palais methodology to
prove that Diff(M) → Diff(M)/Diff(M,Σ) is a fibra-
tion. The fiber is Diff(M,Σ), giving a long exact sequence

· · · → πq(Diff(M,Σ)) → πq(Diff(M)) → Hq(M,Σ)

→ πq−1(Diff(M,Σ)) → πq−1(Diff(M)) → · · ·

Since the genus of Σ is at least 2, πq(Diff(M,Σ)) = 0 for
q ≥ 2.

For most reducible M , π1(Diff(M)) is known to be non-
finitely-generated (Kalliongis-M, 1996), suggesting that
H(M,Σ) has a complicated homotopy type in these cases.
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Theorem 1 has some nice applications:

Corollary 2 Suppose that M is irreducible and
π1(M) is infinite, and that M is not non-Haken with
the Nil geometry. Then Hi(M,Σ) = 0 for i ≥ 2, and
there is an exact sequence

1 → center(π1(M)) → H1(M,Σ) → G(M,Σ) → 1 .

Consequently for these (M,Σ):

(a) Each component of H(M,Σ) is aspherical.

(b) If π1(M) is centerless, then H(M,Σ) is a
K(G(M,Σ), 1)-space.

Corollary 3 If the Hempel distance d(M,Σ) > 3,
then H(M,Σ) has finitely many components, each of
which is contractible. If d(M,Σ) > 2 genus(Σ), then
H(M,Σ) is contractible.

The proof of Corollary 3 uses results of J. Hempel, J.
Johnson, and A. Thompson.
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For elliptic 3-manifolds, the homotopy type of H(M,Σ)
is, as expected, more complicated and more difficult to
calculate. But provided that the manifold satisfies the
SC, we can utilize information coming from the quater-
nionic calculation of Isom(M) to obtain a good descrip-
tion of H(M,Σ).

For the 3-sphere:

Theorem 4 For n ≥ 0 let Σn be the unique Heegaard
surface of genus n in S3.

1. H(S3,Σ0) ≃ RP3.

2. H(S3,Σ1) ≃ RP2×RP2.

3. For n ≥ 2, Hi(S
3,Σn) ∼= πi(S

3×S3) for i ≥ 2, and
there is an non-split exact sequence

1 → C2 → H1(S
3,Σn) → G(S3,Σn) → 1

where C2 is the cyclic group of order 2.
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For lens spaces:

Theorem 5 Let L = L(m, q) be a lens space with
m ≥ 2 and 1 ≤ q ≤ m/2. If L = L(2, 1), assume
that L satisfies the Smale Conjecture. For n ≥ 1, let
Σn be the unique Heegaard surface of genus n in L.

1. If q ≥ 2, then

(a) H(L,Σ1) is contractible.

(b) For n ≥ 2, Hi(L,Σn) = 0 for i ≥ 2, and there
is an exact sequence

1 → Z×Z → H1(L,Σn) → G(L,Σn) → 1 .

2. If m > 2 and q = 1, then

(a) H(L,Σ1) ≃ RP2.

(b) For n ≥ 2, Hi(L,Σn) ∼= πi(S
3) for i ≥ 2, and

there are exact sequences

1 → Z → H1(L,Σn) → G(L,Σn) → 1

for m odd, and

1 → Z×C2 → H1(L,Σn) → G(L,Σn) → 1

for m even.
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3. If L = L(2, 1), then

(a) H(L,Σ1) ≃ RP2×RP2.

(b) For n ≥ 2, Hi(L,Σn) ∼= πi(S
3 × S3) for i ≥ 2,

and there is an exact sequence

1 → C2 × C2 → H1(L,Σn) → G(L,Σn) → 1 .

For the other elliptic 3-manifolds:

Theorem 6 Let E be an elliptic 3-manifold, but not
S3 or a lens space. Assume, if necessary, that E sat-
isfies the Smale Conjecture. Let Σ be a Heegaard sur-
face in E.

1. If π1(E) ∼= D∗
4m, or if E is one of the three man-

ifolds with fundamental group either T ∗
24, O

∗
48, or

I∗120, then Hi(E,Σ) ∼= πi(S
3) for i ≥ 2 and there is

an exact sequence

1 → C2 → H1(E,Σ) → G(E,Σ) → 1 .

2. If E is not one of the manifolds in Case (1), that
is, either π1(E) has a nontrivial cyclic direct fac-
tor, or π1(E) is a diagonal subgroup of index 2
in D∗

4m × Cn or of index 3 in T ∗
48 × Cn, then

Hi(E,Σ) = 0 for i ≥ 2, and there is an exact
sequence

1 → Z → H1(E,Σ) → G(E,Σ) → 1 .
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