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handlebody = (compact) 3-dimensional

orientable handlebody

action = effective action of a finite

group G on a handlebody, by

orientation-preserving (smooth-

or PL-) homeomorphisms

Actions on handlebodies have been extensively
studied. See articles by various combinations
of: Bruno Zimmermann, Andy Miller, John
Kalliongis, McC.

Those articles examine the general case of ac-
tions that are not necessarily free. The first
focus on free actions seems to be:

J. H. Przytycki, Free actions of Zn on handle-
bodies, Bull. Acad. Polonaise des Sciences
XXVI (1978), 617-624.

The remainder of this talk concerns recent joint
work with Marcus Wanderley, of Universidade
Federal de Pernambuco, Brazil.
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Elementary Observation: Every finite group

acts freely on a handlebody.

Proof: Let Vµ be a handlebody of genus µ,

where µ is the minimum number of elements

in a generating set for G.

Since π1(Vµ) is free of rank µ, there is a sur-

jective homomorphism φ : π1(Vµ)→ G.

The covering of Vµ corresponding to the kernel

of φ is a handlebody (since its fundamental

group is free), and it admits an action by G by

covering transformations, with quotient Vµ. �

χ ⇒ this covering is V1+(µ−1)|G|.
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There is a simple stabilization process for going

from an action of G on V1+(µ−1)|G| to an action

on V1+(µ−1)|G|+|G|.

Adding a small 1-handle to the quotient han-

dlebody corresponds to adding |G| small 1-

handles to V1+(µ−1)|G|, which are permuted by

the action of G. The result is a free G-action

on V1+(µ−1)|G|+|G|.

Repeating, we see that G acts freely on the

handlebodies V1+(µ+k−1)|G| for all k ≥ 0, and

Euler characteristic considerations show that

these are the only genera that admit free G-

actions.
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Two actions φ, ψ : G → Homeo(V ) are equiva-

lent when they are the same after a change of

coordinates on V .

(That is, there exists a homeomorphism h of

V so that φ(g) = h ◦ ψ(g) ◦ h−1 for all g ∈ G.)

They are weakly equivalent when they are equiv-

alent after changing one of them by an auto-

morphism of G.

(That is, there exist a homeomorphism h of V

and an automorphism α of G so that φ(α(g)) =

h ◦ ψ(g) ◦ h−1 for all g ∈ G.)
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Example: For G = C5 = {1 , t , t2, t3, t4}, define

actions φ and ψ on the solid torus V1 = S1×D2

by:

φ(t)(θ, x) = (e2πi/5θ, x)

ψ(t)(θ, x) = (e6πi/5θ, x)

These are weakly equivalent, since if α(t) = t3

then φ(α(t)) = ψ(t), but are not equivalent

(using a result we will state later). However,

after a single stabilization, they become equiv-

alent.

Geometrically, this is complicated. The next

page is a sequence of pictures showing the

steps in constructing an equivalence of the sta-

bilized actions:
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Although the determination of when two ac-

tions are equivalent is geometrically compli-

cated, there is a simple group-theoretic crite-

rion one can use to test equivalence and weak

equivalence.

This criterion for equivalence was known to

Kalliongis & Miller a number of years ago, in

fact it appears between the lines of some of

their published work, and was probably known

to others as well.

The criterion uses a classical concept in group

theory, called Nielsen equivalence of generating

sets of G. It was studied by J. Nielsen, J.

Thompson, B. & H. Neumann, and others.

Nielsen equivalence for generating sets of π1(M3)

has been used by Y. Moriah and M. Lustig to

detect nonisotopic Heegaard splittings of vari-

ous kinds of 3-manifolds.
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Define a generating n-vector for G to be a

vector (g1, . . . , gn), where {g1, . . . , gn} generates

G. Two generating n-vectors (g1, . . . , gn) and

(h1, . . . , hn) are related by an elementary Nielsen

move if (h1, . . . , hn) equals one of:

1. (gσ(1), . . . , gσ(n)) for some permutation σ,

2. (g1, . . . , g
−1
i , . . . , gn),

3. (g1, . . . , gig
±1
j , . . . , gn), where j 6= i,

Call (s1, . . . , sn) and (t1, . . . , tn) Nielsen equiv-

alent if they are related by a sequence of el-

ementary Nielsen moves, and weakly Nielsen

equivalent if (α(s1), . . . , α(sn)) and (t1, . . . , tn)

are Nielsen equivalent for some automorphism

α of G.
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Using only elementary covering space theory,

one can check that:

The (weak) equivalence classes of free G-

actions on V1+(n−1)|G| correspond to the

(weak) Nielsen equivalence classes of gen-

erating n-vectors of G.

Example revisited: For G = C5 = {1 , t , t2, t3, t4},
define actions φ and ψ on the solid torus V1 =

S1 ×D2 by:

φ(t)(θ, x) = (e2πi/5θ, x)

ψ(t)(θ, x) = (e6πi/5θ, x)

These actions are inequivalent, but after one

stabilization, they become equivalent:

Proof: (t) is not Nielsen equivalent to (t3), but

(t,1) ∼ (t, t3) ∼ (tt−3t−3, t3) = (1, t3) ∼ (t3,1) �
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Notation: Fix G. For k ≥ 0, define

e(k) = the number of equivalence

classes of G-actions on V1+(µ+k−1)|G|,

w(k) = the number of weak equivalence

classes of G-actions on V1+(µ+k−1)|G|.

Note that

1. For all k, 1 ≤ w(k) ≤ e(k).

2. w(0) is the number of weak equivalence

classes of minimal genus free G-actions.

3. e(k) = 1 for all k ≥ 1 means that any two

free G-actions on a handlebody of genus

above the minimal genus are equivalent.
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Some results, mostly proven by quoting good
algebra done by other people.

1. (B. & H. Neumann) For G = A5, w(0) = 2.
That is, there are two weak equivalence
classes of A5-actions on V61.

2. (D. Stork) For G = A6, w(0) = 4. That is,
there are four weak equivalence classes of
A6-actions on V361.

3. (M. Dunwoody) For G solvable:
w(0) can be arbitrarily large
e(k) = 1 for all k ≥ 1

4. (elementary) For G abelian, say
G = Cd1

× · · · × Cdm where di+1|di:

w(0) = 1

e(0) =

1 if dm = 2

φ(dm)/2 if dm > 2

A similar result holds for G dihedral.
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5. (easy algebra) [various results saying that

actions become equivalent after enough sta-

bilizations]

6. (R. Gilman) For G = PSL(2, p), p prime,

e(k) = 1 for k ≥ 1. This includes the case

of PSL(2,5) ∼= A5.

7. (M. Evans) For G = PSL(2,2m) or G =

Sz(22m−1), e(k) = 1 for k ≥ 1.

8. (harder work using information about the

subgroups of PSL(2, q), together with ideas

of Gilman and Evans) For G = PSL(2,3p),

p prime, e(k) = 1 for k ≥ 1. This includes

the case of PSL(2,9) ∼= A6. The same

can probably be proven for more cases of

PSL(2, q) using these methods.
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Simple but difficult questions:

1. Are all actions on genera above the mini-

mal one equivalent?

I. e. is e(k) = 1 for all k ≥ 1 for all finite

G?

I. e. if n > µ, are any two generating n-

vectors Nielsen equivalent?

(For some infinite G, no)

2. Is every action the stabilization of a mini-

mal genus action?

I. e. is every generating n-vector equivalent

to one of the form (g1, . . . , gµ,1, . . . ,1)?

3. Do any two G-actions on a handlebody be-

come equivalent after one stabilization?

Yes for 1 ⇐⇒ Yes for both 2 and 3.
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A question that is probably much easier:

Do there exist weakly inequivalent actions

of a nilpotent G on a handlebody of genus

less than 8193 ?

(This is the lowest-genus example we have found

of inequivalent actions of a nilpotent group, it

is a certain 3-generator nilpotent group. An

example was given many years ago by B. H.

Neumann, a 2-generator nilpotent group act-

ing on the same genus.)
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