Free Actions on Handlebodies

- handlebody = (compact) 3-dimensional orientable handlebody
 - action = effective action of a finite group G on a handlebody, by orientation-preserving (smoothor PL-) homeomorphisms

Actions on handlebodies have been extensively studied. See articles by various combinations of: Bruno Zimmermann, Andy Miller, John Kalliongis, McC.

Those articles examine the general case of actions that are not necessarily free. The first focus on *free* actions seems to be:

J. H. Przytycki, Free actions of \mathbb{Z}_n on handlebodies, *Bull. Acad. Polonaise des Sciences* XXVI (1978), 617-624.

The remainder of this talk concerns recent joint work with **Marcus Wanderley,** of Universidade Federal de Pernambuco, Brazil. **Elementary Observation:** Every finite group acts freely on a handlebody.

Proof: Let V_{μ} be a handlebody of genus μ , where μ is the minimum number of elements in a generating set for G.

Since $\pi_1(V_\mu)$ is free of rank μ , there is a surjective homomorphism $\phi \colon \pi_1(V_\mu) \to G$.

The covering of V_{μ} corresponding to the kernel of ϕ is a handlebody (since its fundamental group is free), and it admits an action by G by covering transformations, with quotient V_{μ} . \Box

$$\chi \Rightarrow$$
 this covering is $V_{1+(\mu-1)|G|}$.

There is a simple *stabilization* process for going from an action of G on $V_{1+(\mu-1)|G|}$ to an action on $V_{1+(\mu-1)|G|+|G|}$.

Adding a small 1-handle to the quotient handlebody corresponds to adding |G| small 1handles to $V_{1+(\mu-1)|G|}$, which are permuted by the action of G. The result is a free G-action on $V_{1+(\mu-1)|G|+|G|}$.

Repeating, we see that G acts freely on the handlebodies $V_{1+(\mu+k-1)|G|}$ for all $k \ge 0$, and Euler characteristic considerations show that these are the only genera that admit free G-actions.

Two actions $\phi, \psi \colon G \to \text{Homeo}(V)$ are *equivalent* when they are the same after a change of coordinates on V.

(That is, there exists a homeomorphism h of V so that $\phi(g) = h \circ \psi(g) \circ h^{-1}$ for all $g \in G$.)

They are weakly equivalent when they are equivalent after changing one of them by an automorphism of G.

(That is, there exist a homeomorphism h of Vand an automorphism α of G so that $\phi(\alpha(g)) = h \circ \psi(g) \circ h^{-1}$ for all $g \in G$.) *Example:* For $G = C_5 = \{1, t, t^2, t^3, t^4\}$, define actions ϕ and ψ on the solid torus $V_1 = S^1 \times D^2$ by:

$$\phi(t)(\theta, x) = (e^{2\pi i/5}\theta, x)$$

$$\psi(t)(\theta, x) = (e^{6\pi i/5}\theta, x)$$

These are weakly equivalent, since if $\alpha(t) = t^3$ then $\phi(\alpha(t)) = \psi(t)$, but are not equivalent (using a result we will state later). However, after a single stabilization, they become equivalent.

Geometrically, this is complicated. The next page is a sequence of pictures showing the steps in constructing an equivalence of the stabilized actions:

Although the determination of when two actions are equivalent is geometrically complicated, there is a simple group-theoretic criterion one can use to test equivalence and weak equivalence.

This criterion for equivalence was known to Kalliongis & Miller a number of years ago, in fact it appears between the lines of some of their published work, and was probably known to others as well.

The criterion uses a classical concept in group theory, called *Nielsen equivalence* of generating sets of G. It was studied by J. Nielsen, J. Thompson, B. & H. Neumann, and others.

Nielsen equivalence for generating sets of $\pi_1(M^3)$ has been used by Y. Moriah and M. Lustig to detect nonisotopic Heegaard splittings of various kinds of 3-manifolds. Define a generating *n*-vector for G to be a vector (g_1, \ldots, g_n) , where $\{g_1, \ldots, g_n\}$ generates G. Two generating *n*-vectors (g_1, \ldots, g_n) and (h_1, \ldots, h_n) are related by an *elementary Nielsen move* if (h_1, \ldots, h_n) equals one of:

1. $(g_{\sigma(1)}, \ldots, g_{\sigma(n)})$ for some permutation σ ,

2.
$$(g_1, \ldots, g_i^{-1}, \ldots, g_n)$$
,

3.
$$(g_1,\ldots,g_ig_j^{\pm 1},\ldots,g_n)$$
, where $j
eq i$,

Call (s_1, \ldots, s_n) and (t_1, \ldots, t_n) Nielsen equivalent if they are related by a sequence of elementary Nielsen moves, and weakly Nielsen equivalent if $(\alpha(s_1), \ldots, \alpha(s_n))$ and (t_1, \ldots, t_n) are Nielsen equivalent for some automorphism α of G. Using only elementary covering space theory, one can check that:

The (weak) equivalence classes of free Gactions on $V_{1+(n-1)|G|}$ correspond to the (weak) Nielsen equivalence classes of generating n-vectors of G.

Example revisited: For $G = C_5 = \{1, t, t^2, t^3, t^4\}$, define actions ϕ and ψ on the solid torus $V_1 = S^1 \times D^2$ by:

$$\phi(t)(\theta, x) = (e^{2\pi i/5}\theta, x)$$

$$\psi(t)(\theta, x) = (e^{6\pi i/5}\theta, x)$$

These actions are inequivalent, but after one stabilization, they become equivalent:

Proof: (*t*) is not Nielsen equivalent to (t^3) , but $(t,1) \sim (t,t^3) \sim (tt^{-3}t^{-3},t^3) = (1,t^3) \sim (t^3,1)$

Notation: Fix G. For $k \ge 0$, define

e(k) = the number of equivalence classes of *G*-actions on $V_{1+(\mu+k-1)|G|}$,

w(k) = the number of weak equivalence classes of *G*-actions on $V_{1+(\mu+k-1)|G|}$.

Note that

- 1. For all k, $1 \leq w(k) \leq e(k)$.
- 2. w(0) is the number of weak equivalence classes of minimal genus free *G*-actions.
- 3. e(k) = 1 for all $k \ge 1$ means that any two free *G*-actions on a handlebody of genus above the minimal genus are equivalent.

Some results, mostly proven by quoting good algebra done by other people.

- 1. (B. & H. Neumann) For $G = A_5$, w(0) = 2. That is, there are two weak equivalence classes of A_5 -actions on V_{61} .
- 2. (D. Stork) For $G = A_6$, w(0) = 4. That is, there are four weak equivalence classes of A_6 -actions on V_{361} .
- 3. (M. Dunwoody) For G solvable: w(0) can be arbitrarily large e(k) = 1 for all $k \ge 1$
- 4. (elementary) For G abelian, say $G = C_{d_1} \times \cdots \times C_{d_m}$ where $d_{i+1}|d_i$:

$$w(0) = 1$$

$$e(0) = \begin{cases} 1 & \text{if } d_m = 2\\ \phi(d_m)/2 & \text{if } d_m > 2 \end{cases}$$

A similar result holds for G dihedral.

- (easy algebra) [various results saying that actions become equivalent after enough stabilizations]
- 6. (R. Gilman) For G = PSL(2, p), p prime, e(k) = 1 for $k \ge 1$. This includes the case of PSL(2,5) $\cong A_5$.
- 7. (M. Evans) For $G = PSL(2, 2^m)$ or $G = Sz(2^{2m-1})$, e(k) = 1 for $k \ge 1$.
- 8. (harder work using information about the subgroups of PSL(2,q), together with ideas of Gilman and Evans) For $G = PSL(2,3^p)$, p prime, e(k) = 1 for $k \ge 1$. This includes the case of $PSL(2,9) \cong A_6$. The same can probably be proven for more cases of PSL(2,q) using these methods.

Simple but difficult questions:

1. Are all actions on genera above the minimal one equivalent?

I. e. is e(k) = 1 for all $k \ge 1$ for all finite G?

I. e. if $n > \mu$, are any two generating *n*-vectors Nielsen equivalent? (For some *infinite G*, no)

- 2. Is every action the stabilization of a minimal genus action?
 I. e. is every generating *n*-vector equivalent to one of the form (g₁,...,g_µ,1,...,1)?
- 3. Do any two *G*-actions on a handlebody become equivalent after one stabilization?

Yes for $1 \iff$ Yes for both 2 and 3.

A question that is probably much easier:

Do there exist weakly inequivalent actions of a nilpotent G on a handlebody of genus less than 8193?

(This is the lowest-genus example we have found of inequivalent actions of a nilpotent group, it is a certain 3-generator nilpotent group. An example was given many years ago by B. H. Neumann, a 2-generator nilpotent group acting on the same genus.)