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of knot tunnels”, ArXiv math.GT/0611921)

H = genus-2 handlebody

D(H) = complex of nonseparating disks in H

D(H) is 2-dimensional and looks like this:

D(H) has countably many 2-simplices at-
tached along each edge

D(H) is contractible (McC 1991, better
proof Cho 2006). In fact, it deformation
retracts to a bipartite tree 7' which has
valence-3 vertices corresponding to triples
of disks and countable-valence vertices cor-
responding to pairs of disks in H

D(H) imbeds naturally in the curve com-
plex C(0H)



When H is a standard (unknotted) handlebody
in the 3-sphere S3, D(H) obtains extra struc-
ture:

A disk D C H is primitive if there exists a
“dual” disk D' ¢ S3 — H such that 8D and 8D’

Cross in one point. Here are two primitive disks
in H:

T he vertices represented by primitive disks span
the primitive subcomplex P(H) of D(H).

Theorem 1 (S. Cho 2006) P(H) is contractible,
and deformation retracts to the tree P(H)NT.
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The Goeritz group I is the group of orientation-
preserving homeomorphisms of S3 that pre-
serve H, modulo isotopy through homeomor-
phisms preserving H.

Theorem 2 (M. Scharlemann, E. Akbas) I is
finitely presented.

— The action of ' on D(H) preserves P(H),
and has been used by S. Cho to give a new
proof of the Scharlemann-Akbas theorem.

— Using the work of Akbas and Cho, we can
completely understand the action of ' on
D(H), and describe the quotient D(H)/I",
which looks like this:




Let 7 be a nonseparating disk in H. Cutting H
along 7 gives a solid torus, whose core circle
K, is a knot in S3.

Here are disks for which K, is a trefoil knot
and a figure-8 knot:

K+ is the trivial knot if and only if 7 is primitive.
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From the viewpoint of K-, 7 is the cocore disk
of a 1-handle attached to a regular neighbor-
hood Nbd(K;).

In the language of classical knot theory:

— K+ is a tunnel number 1 knot.

— The 1-handle of which 7 is the cocore
2-disk is a tunnel of K.

Tunnels are equivalent when there is an orienta-
tion-preserving homeomorphism of S3 taking
knot to knot and tunnel to tunnel.

The equivalence classes of tunnels correspond
to the homeomorphism classes of genus-2 Hee-
gaard splittings of knot spaces.



Different (isotopy classes of) disks in H can
give equivalent tunnels. For example, we have
mentioned that any primitive disk gives a tun-
nel of the trivial knot, and all of these tunnels
are equivalent.

It is a matter of checking definitions to see that
two disks in H give equivalent tunnels exactly
when they are equivalent under the action of
the Goeritz group. That is:

The equivalence classes of tunnels of tunnel
number 1-knots correspond exactly to the ver-
tices of D(H)/TI".

By analyzing D(H)/I" and the tree T/I', we
can obtain a lot of information about tunnel
number 1 knots and their tunnels.



It turns out that starting at the vertex of T/I
corresponding to the primitive triple and mov-
ing through T'/I" corresponds to performing a
sequence of simple “cabling operations” that
produce new knots and tunnels. The following
figure illustrates how this works:
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Some consequences:

— Since T'/T is a tree, every tunnel can be ob-
tained by starting from the tunnel of the
trivial knot and performing a unique se-
quence of cabling operations.

— Since cabling operations can be described
by rational “slope” parameters (a Q/Z-valued
parameter for the very first cabling in the
sequence), this leads to a parametrization
of all tunnels by finite sequences of rational
numbers (plus a bit more data).

— The slope of the final cabling operation is
(up to details of definition) the tunnel in-
variant discovered by M. Scharlemann and
A. Thompson.



More consequences:

Theorem 3 (D. Futer) Let o be a tunnel arc
for a nontrivial knot K C S3. Then « is fixed
pointwise by a strong inversion of K if and only
if K is a two-bridge knot and o is its upper or
lower tunnel.

Theorem 4 (Adams-Reid, Kuhn) The only
tunnels of a 2-bridge link are its upper and
lower tunnels.

Theorem 5 LetT be atunnel of a tunnel num-
ber 1 knot or link. Suppose that v is equiva-
lent to itself by an orientation-reversing equiv-
alence. Then T is the tunnel of the trivial knot,
the trivial link, or the Hopf link.
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For a tunnel 7, the distance in the 1-skeleton
of D(H)/I" from the (orbit of the) primitive
disk mg to 7 is called the depth of 7. Here is a

picture of a depth-4 tunnel 7:

The depth-1 tunnels are exactly the “(1,1)"
tunnels (i. e. some tunnel arc plus one of the
arcs in the knot is an unknotted circle).
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A difficult geometric theorem of H. Goda-M.
Scharlemann-A. Thompson, called “tunnel lev-
eling”, allows us to easily prove the following
estimate on bridge number of K, as a function
of depth(r):

Theorem 6 If 7 has depth d > 1, then the
bridge number of K, is at least b,,;, where by
is given by the recursion

by = 2,by = 2
by, = bop—1 + bop—2
bon+1 = bop + bop—2

Corollary 1 For any sequence of tunnels, the
asymptotic growth rate of the bridge number
of K, as a function of depth(r) is at least pro-
portional to (1 + v/2)¢.

This rate is the smallest possible, in general:

There is a sequence of tunnels of torus knots
that achieves this rate (it achieves the above
recursion with b = 2 and b3 = 3).
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Another measure of complexity for a tunnel has
been studied by J. Johnson, A. Thompson, and
others:

The Heegaard distance dist(7) is the distance
in the curve complex C(0H) from Ot to a loop
that bounds a disk in S3 — H.

Distance is related to depth by dist(7) — 1 <
depth(7) (so our previous lower bound on growth
rate of bridge number holds if Heegaard dis-
tance is used in place of depth).

In fact, depth is a finer invariant than Heegaard
distance:

There is a sequence of distance-3 tunnels whose
depths go to oo (they are the “short” or “edge”
tunnels of certain torus knots).
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Here is a schematic picture of D(H) sitting in
the curve complex:
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Some questions:

— What is C(0H) /I like?

— How do D(H) and D(S3 — H) sit in C(0H)?
And modulo I'?

— How is distance in D(H) related to Hee-
gaard distance? In particular, are there
some natural conditions, in terms of tun-
nels, that ensure large Heegard distance?

— Is there a tunnel number 1 knot that has
more than one equivalence class of tunnel
of depth greater than 17

— For the higher-genus analogues, what is
the subcomplex of primitive disks like?
Note: for genus > 3, it has not even been
proven that the Goeritz group is finitely
generated.
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