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(joint work with Sangbum Cho, in “The depth

of a knot tunnel”, arXiv:0708.3399)

H

A tunnel number 1 knot K ⊂ S3 is a knot for

which you can take a regular neighborhood of

the knot and add a 1-handle in some way to get

an unknotted handlebody (i. e. a handlebody

which can be moved by isotopy to the standard

handlebody H in S3).

The added 1-handle is called a tunnel of K.
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An isotopy taking the knot and tunnel to H

carries the cocore 2-disk to some nonseparat-

ing disk τ in H.

H

Kτ

τ

And each nonseparating disk τ in H is the co-

core disk of a tunnel of the knot Kτ which is

the core circle of the solid torus obtained by

cutting H along τ .

The nonseparating disks in H are the vertices

of the disk complex D(H). Vertices span a

simplex exactly when the corresponding disks

are isotopic to a disjoint collection.

3



D(H) looks like this, with countably many 2-

simplices meeting at each edge:

and it deformation retracts to the tree T shown

in this figure.

Any two disks in H coming from equivalent

tunnels must differ by an isotopy that moves

H around in S3, back to where it started. That

is, they differ by the action of an element of

the Goeritz group, denoted by G.

So the collection of all tunnels of all tunnel

number 1 knots corresponds to the set of ver-

tices of the quotient complex D(H)/G.
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Using recent work of M. Scharlemann, E. Ak-

bas, and S. Cho on the genus-2 Goeritz group,

it is not hard to work out exactly what D(H)/G

looks like:

π 0

π0 is the orbit of “primitive” disks, which rep-

resents the tunnel of the trivial knot.
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Moving through D(H)/G in different ways cor-

responds to geometric constructions of new

tunnels from old ones. Here is the first way,

the “cabling construction.”

Fix a tunnel τ .

T/G is a tree. The unique path in T/G from

the “root” of T/G to the nearest barycenter of

a simplex that contains τ is called the principal

path of τ :

π

τ

0
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Traveling along the principal path of τ en-

codes a sequence of simple cabling construc-

tions, starting with the tunnel of the trivial

knot and ending with τ .

The following picture indicates how this works:
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Since T/G is a tree, every tunnel can be ob-

tained by starting from π0 and performing a

unique sequence of cabling constructions.

7



Moving through the 1-skeleton of D(H)/G cor-

responds to a geometric construction of tun-

nels that first appeared in a paper of H. Goda,

M. Scharlemann, and A. Thompson in 2000.

We call it a giant step (Giant STep.)

Start with a knot and a tunnel τ .

τ

(This is a picture up to abstract homeomor-

phism of H. In S3, the picture usually looks

much more complicated.)
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Choose any loop K in ∂H that crosses τ in

exactly one point. It turns out that this must

be a tunnel number 1 knot with a tunnel disk

σ disjoint from τ .

τ

K

σ

τ

In D(H)/G, this giant step corresponds to mov-

ing along the 1-simplex from τ to σ.
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π

τ

0

This example τ can be obtained from the trivial

tunnel by 5 giant steps.

Giant steps can have a much more drastic ef-

fect than cabling constructions— this example

requires 15 cabling constructions. Also, any

(1,1)-tunnel is produced from the trivial tun-

nel by a single giant step.
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π

τ

0

Unlike the cabling sequence, a minimal giant

step sequence producing a given tunnel is usu-

ally not unique. In this example, there are two

places where another route is possible, leading

to four possible minimal giant step sequences

producing τ .

We will now describe a general algorithm to

compute the number of minimal paths from π0

to τ in the 1-skeleton of D(H)/G, and hence

the number of minimal giant step construc-

tions of a tunnel.
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The simplices that meet the principal path of

τ form the corridor of τ :
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The “distance-from-π0” (or “depth”) function

breaks the corridor into blocks, each having

one of four types:
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The type of the ith block determines a matrix
Mi given in this table:

L1 R1 L2 R2

Mi

(

1 0
1 1

) (

1 1
0 1

) (

0 0
1 1

) (

1 1
0 0

)

The number of distinct minimal giant step se-

quences can be worked out easily from the en-

tries of the product

M2M3 · · ·Mn .
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The algorithm is easy to implement computa-

tionally.

The input is a binary string s2s3 · · · sn which

describes the structure of the corridor (roughly

speaking, si = 0 means “go horizontally”, si =

1 means “go down to the next larger depth”).

For our previous example, the input string is

0011100011100.

Depth> gst( ’0011100011100’, verbose=True )

The intermediate configurations are L1, R2, R1.

The transformation matrices are:

[ [ 1, 0 ], [ 1, 1 ] ]

[ [ 1, 1 ], [ 0, 0 ] ]

[ [ 1, 1 ], [ 0, 1 ] ]

and their product is [ [ 1, 2 ], [ 1, 2 ] ].

The final block has configuration L2.

This tunnel has 4 minimal giant step
constructions.
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Examples:
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This corridor corresponds to the parameter se-
quence 1010101, and there are 8 minimal gi-
ant step constructions. An example of a tunnel
with this corridor is the “middle” tunnel of the
(99,70) torus knot.

In general, for the sequence
s2s3 · · · s2n = 1010 · · ·101, the number of min-
imal giant step sequences is the term Fn+2 in
the Fibonacci sequence
(F1, F2, F3, . . .) = (1,1,2,3,5, . . .).
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1. s2s3 · · · s2n+1 = 111 · · ·1, an even number

of 1’s. There is a unique minimal giant

step sequence.

2. s2s3 · · · s2n = 111 · · ·1, an odd number of

1’s. There are n + 1 minimal giant step

sequences.

Examples of these two types differ by a single

additional cabling construction.

For a sparse infinite set of tunnels, there is a

unique minimal giant step sequence.

A randomly chosen tunnel will have many min-

imal giant step sequences.
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