
The Smale Conjecture

for Elliptic 3-manifolds
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For the standard round 2-sphere S2, the group

of isometries Isom(S2) is the orthogonal group

O(3). Just take S2 to be the unit sphere in R3,

and let the orthogonal group act in the usual

way.

The group of diffeomorphisms Diff(S2) is much

larger. As is the case for any closed smooth

manifold of positive dimension, it is an infinite-

dimensional Fréchet manifold.

In 1959 Steve Smale proved that

The inclusion of Isom(S2) into Diff(S2)

is a homotopy equivalence.

Some infinite-dimensional manifold theory then

implies that

Diff(S2) is homeomorphic to the product

of O(3) with a separable Fréchet space.
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For the 3-sphere, Isom(S3) is O(4), and Smale
conjectured that the corresponding result would
be true for the 3-sphere S3:

The inclusion of Isom(S3) into Diff(S3)

is a homotopy equivalence.

The Smale Conjecture was proven in two steps.

Step 1 (the “π0”-part) J. Cerf (1968) proved
that Isom(S3)→ Diff(S3) is a bijection on path
components.

Step 2 (the “π>0”-part) A. Hatcher (1983)
proved that Isom(S3)→ Diff(S3) is an isomor-
phism on all higher homotopy groups.

It is natural to ask the extent to which all of
this extends to closed 3-manifolds of constant
positive curvature. The (Generalized) Smale
Conjecture asserts that Isom(M)→ Diff(M) is
a homotopy equivalence for such a 3-manifold.
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The isometry groups of these elliptic 3-mani-

folds are various Lie groups whose dimensions

range from 1 to 6. It has been known for a

long time how to compute them, but a detailed

and complete calculation did not seem to be

in the literature, so I provided one (Isometries

of elliptic 3-manifolds, J. London Math. Soc.

(2) 65 (2002), 167-182).

In that paper, using known calculations of the

mapping class groups of elliptic 3-manifolds

by a number of different people, I checked

that π0(Isom(M))→ π0(Diff(M)) is an isomor-

phism in all cases. So there remains only the

Hatcher step. That is, one must show that

isom(M)→ diff(M)

induces an isomorphism on πn for n ≥ 1, where

the small letters on isom(M) and diff(M) indi-

cate the connected component of the identity

map in Isom(M) and Diff(M).
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For the Smale Conjecture, the elliptic 3-manifolds

seem to divide into the following cases:

1. “Very small” elliptic manifolds (largest isom-

etry groups):

a. S3

b. RP3

2. Lens spaces L(m, q), m ≥ 3

3. Elliptic manifolds that contain an incom-

pressible (one-sided) Klein bottle:

a. L(4m,2m− 1)

b. The quaternionic spaces (2,2,2)

c. The binary dihedral spaces (2,2, m)

4. “Large” elliptic manifolds:

a. The binary tetrahedral spaces (2,3,3)

b. The binary octahedral spaces (2,3,4)

c. The binary icosahedral spaces (2,3,5)

5



The known cases of the Smale Conjecture are:

1a. S3 – Cerf and Hatcher (1968, 1983)

3. the elliptic 3-manifolds that contain a one-

sided Klein bottle – Ivanov (1979, most

cases), McC-Rubinstein (remaining cases

except for L(4,1))

To this we can now (probably) add:

2. lens spaces L(m, q), m ≥ 3

leaving open only

1b. RP3

4. the binary polyhedral spaces that do not

contain a one-sided Klein bottle.
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Theorem 1 (Hong-M-Rubinstein) For any lens

space L(m, q), m ≥ 3, the inclusion Isom(L)→
Diff(L) is a homotopy equivalence.

Since homotopy equivalent Fréchet manifolds

are homeomorphic, some infinite-dimensional

topology and the known calculations of the

isometry groups show:

Corollary 2 For the L(m, q) with m ≥ 3, there

are exactly four homeomorphism classes of

Diff(L(m, q)).

This contrasts with an interesting result of F.

Takens:

Theorem 3 (Takens) Let M and N be smooth

manifolds. If Diff(M) and Diff(N) are isomor-

phic as groups, then M is diffeomorphic to N .
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Our proof of the Smale Conjecture for lens
spaces is extremely complicated, and its details
are still being checked. Here is the basic idea:

1. Fix a Seifert fibering on L (the “Hopf”
fibering which lifts to the Hopf fibering of
S3).

2. Isometries take fibers to fibers, that is,
isom(L) ⊂ difff(L) where difff(L) is the
subgroup of diffeomorphisms taking fibers
to fibers.

3. Factor the inclusion isom(L)→ diff(L) as

isom(L)→ difff(L)→ diff(L)

4. It is relatively easy to prove that isom(L)→
difff(L) is a homotopy equivalence, so we
are reduced to showing that difff(L) →
diff(L) is a homotopy equivalence. This
amounts to showing how to deform a pa-
rameterized family of diffeomorphisms of L

so that each of them is fiber-preserving.
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Let’s start with a method for showing that a
single diffeomorphism h : L → L is isotopic to
a fiber-preserving diffeomorphism.

The key idea is to decompose L as follows:

Take the two exceptional orbits (or any two
regular orbits, in the case of L(m,1)) S0 and
S1, and regard L− (S0 ∪ S1) as a product T ×
(0,1), where T is the torus.

Such a decomposition of L into two “singular”
circles together with a product region T×(0,1)
is called a sweepout. The Ts = T × {s} are
called level tori.

For this “base” sweepout, the level tori Ts are
chosen so that each of them is a union of
Seifert fibers.

If we apply h to this structure, we obtain an-
other “image” sweepout h(S0)∪ h(S1)∪ h(T ×
(0,1)).
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There is an ingenious method of Rubinstein
and Scharlemann which allows one to analyze
how the levels of two sweepouts intersect each
other— provided that they meet in a reason-
ably general position— and find two level tori
that intersect nicely. That is, it finds a level
P of one sweepout and a level Q of the other
one so that:

1. Every intersection circle of P and Q either
bounds a disk in P and a disk in Q, or
bounds a disk in neither, and

2. There is at least one “biessential” intersec-
tion circle that bounds a disk in neither P
nor Q.

Applying the Rubinstein-Scharleman method
to the base sweepout and its image sweepout
under h, we obtain a Ts and an h(Tt) that meet
in this nice way. Then, there is a procedure to
isotope h first to eliminate the circle intersec-
tions of Ts and h(Tt) that are contractible in
both, then use a biessential intersection cir-
cle to make h fiber-preserving on Ts, and then
make h fiber-preserving on all of L.
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To adapt this to the parameterized setting, the

three steps are:

1. Perturb the family {hu} so that the base

sweepout and each image sweepout under

an hu meet in good-enough general posi-

tion to apply the Rubinstein-Scharlemann

method.

2. Apply the Rubinstein-Scharlemann method

to find, each parameter u, a level torus

Tu(s) and an image level torus hu(Tu(t))

that meet nicely.

3. Use these pairs of levels to simultaneously

“straighten out” all of the hu to be fiber-

preserving.

Step 3 is very complicated, but uses known

methods.

Step 2 will work, if good-enough general posi-

tion can be obtained.
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Step 1 takes us into the world of singularities of

smooth maps. There are two key ingredients:

1. The space C∞(T, R) of smooth maps from

T to R has a stratified structure, that was

investigated by René Thom, Francis Serg-

eraert and others in the 1970’s.

2. A theorem of J. W. Bruce from the 1980’s,

which shows how to perturb a parameter-

ized family of maps from a manifold A to

a manifold B so that each map is “weakly

transverse” to a submanifold C of B.
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Suppose one has a parameterized family of

maps fu : A → B, u ∈ W , and C ⊂ B is sub-

manifold.

One cannot hope to make every fu(A) trans-

verse to C, but Bill Bruce’s paper shows that

one can perturb the family so that each non-

transverse point of an fu(A) with C is “of finite

singularity type”.

It turns out that to achieve the correct general

position of the family hu : L → L, we have to

apply Bruce’s theorem not to maps into man-

ifolds but maps into C∞(T, R), and not for a

submanifold C of C∞(T, R), but for the strata

of the Sergeraert stratification.

Fortunately, Sergeraert’s local results on the

structure of his stratification of C∞(T, R) give

us enough information to adapt Bruce’s weak

transversality methods, and achieve the gen-

eral position needed for Step 1.
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