Examination I Form B
September 20, 2000
I. Calculate the following partial derivatives.
(16)

1. $\frac{\partial w}{\partial u}$ if $w=\tan ^{-1}\left(u^{2}-v^{2}\right)$
2. $\frac{\partial g}{\partial z}$ if $g(x, y, z)=\frac{x^{2}+y^{2}+z}{z+y-z}$
3. $u_{y y}$ if $u=\ln \sqrt{x^{2}+y^{2}}$
4. $\frac{\partial z}{\partial r}$ if $z=f(x, y)$
II. Write the chain rule for $\frac{\partial w}{\partial x}$ if $w=w(f, g), f=f(x, y)$, and $g=g(x, y)$.
(4)
III. Let $f(x, y, z)=x^{3} y+\sin (z)$.
(9)
5. Calculate ∇f.
6. Calculate the rate of change of f in the direction of $\vec{\imath}+\vec{\jmath}$ at the point $(-1,1,0)$.
7. Tell a vector \vec{u} for which $D_{\vec{u}} f(-1,1,0)=0$.
8. In what direction is f decreasing most rapidly at $(-1,1,0)$, and what is the rate of change of f in that direction?
IV. Explain why there is no function $f(x, y)$ with $f_{x}(x, y)=x-y^{2}$ and $f_{y}(x, y)=x^{2}-y$.
V. The following two questions refer to the function $f(x, y)$ whose graph is shown here, and the four functions
(6) indicated in the graphs A, B, C, and D. All of the functions have domain the points (x, y) with $0 \leq x \leq 1$ and $0 \leq y \leq 1$.

9. The graph of the function $\frac{\partial f}{\partial x}$ looks most like the function in
(a) A
(b) B
(c) C
(d) D
10. The graph of the function $\frac{\partial f}{\partial y}$ looks most like the function in
(a) A
(b) B
(c) C
(d) D
VI.
(5) Suppose that $\frac{1}{R}=\frac{1}{R_{1}}+\frac{1}{R_{2}}$.
11. Use implicit differentiation to calculate $\frac{\partial R}{\partial R_{2}}$.
12. Write an expression for the differential $d R$ in terms of $R, R_{1}, R_{2}, d R_{1}$, and $d R_{2}$.
VII. Let D be the domain in the $x y$-plane consisting of all the points (x, y) for which $x \geq 0, y \geq 0$, and $y \leq 1-x$. (6) Let $f(x, y)=x^{2} y$.
13. Sketch the domain D.
14. Locate all critical points of f in the domain D.
15. Examine the values of f on the boundary of the domain D, and find the point where its maximum value occurs.
