
I. Calculate the following partial derivatives. (16)

(16)
1.
$$\frac{\partial w}{\partial u}$$
 if $w = e^{tuv}$

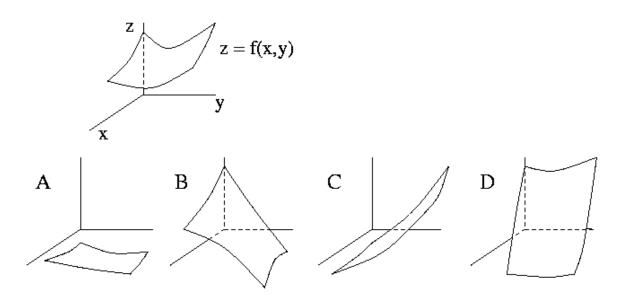
2.
$$\frac{\partial u}{\partial y}$$
 if $u = \frac{x^2 + y^3}{x^3 + y^2}$

3.
$$u_{zz}$$
 if $u = \ln \sqrt{x^2 + y^2 + z^2}$

4.
$$\frac{\partial z}{\partial \theta}$$
 if $z = f(x, y)$

II. Let $f(x, y, z) = x^3 y^2 z$. (9) 1. Calculate ∇f .

2. Calculate the rate of change of f in the direction of $\vec{i} - \vec{j}$ at the point (-1, 1, 1).


3. Tell a vector \vec{u} for which $D_{\vec{u}}f(-1, 1, 1) = 0$.

4. In what direction is f decreasing most rapidly at (-1, 1, 1), and what is the rate of change of f in that direction?

III. Write the chain rule for
$$\frac{\partial x}{\partial f}$$
 if $x = x(u, v)$, $u = u(f, g, h)$, and $v = v(f, g, h)$.
(4)

IV. Explain why there is no function f(x, y) with $f_x(x, y) = x - y^2$ and $f_y(x, y) = x^2 - y$. (4)

- V. The following two questions refer to the function f(x, y) whose graph is shown here, and the four functions
- (6) indicated in the graphs A, B, C, and D. All of the functions have domain the points (x, y) with $0 \le x \le 1$ and $0 \le y \le 1$.

- 1. The graph of the function $\frac{\partial f}{\partial x}$ looks most like the function in
 - $(a) A \qquad (b) B \qquad (c) C \qquad (d) D$
- 2. The graph of the function $\frac{\partial f}{\partial y}$ looks most like the function in

 $(a) A \qquad (b) B \qquad (c) C \qquad (d) D$

VI. Suppose that $R^2 = \sin(R_1^2) + \cos(R_2^2)$. (5) 1. Use implicit differentiation to calculate $\frac{\partial R}{\partial R_2}$.

2. Write an expression for the differential dR in terms of R, R_1 , R_2 , dR_1 , and dR_2 .

- VII. Let D be the domain in the xy-plane consisting of all the points (x, y) for which $x \ge 0$, $y \ge 0$, and $y \le 1-x$. (6) Let $f(x, y) = x^2 y$.
 - 1. Sketch the domain D.

2. Locate all critical points of f in the domain D.

3. Examine the values of f on the boundary of the domain D, and find the point where its maximum value occurs.