Examination III

December 1, 2000

- I. Let D be the domain in the plane consisting of all (x, y) with x > 0. It is simply-connected. (6)
 - 1. Use partial derivatives to verify that the vector field $\left(\frac{y}{x} + x\right)\vec{i} + (\ln(x) + y)\vec{j}$ is conservative.

2. Find a function f(x,y) with $\nabla f = \left(\frac{y}{x} + x\right)\vec{i} + (\ln(x) + y)\vec{j}$

II. Let R be the rectangle in the plane with vertices the points (2,3), (5,3), (2,4), and (5,4). Let C be the boundary of R, with the positive orientation. For each of the following, use a version of Green's Theorem to carry out an easy calculation of the given integral. (Recommendation: If this problem is taking you

more than 2 minutes, go on to other problems and return to this one if you have time.)

1. $\int_C (xy^4 + y) dx + (2x^2y^3 - x) dy$.

2. $\int_C ((2x^2y^3+x)\vec{i}+(3y-xy^4)\vec{j})\cdot\vec{n}\ ds$, where \vec{n} is the unit outward normal of C.

III. Let C be the portion of the graph $y = \tan(x)$ that runs from $(\pi/4, 1)$ to $(\pi/3, \sqrt{3})$, and let \vec{F} be the gradient of the function $f(x,y) = \frac{\ln(y)\tan x}{y}$. Calculate $\int_C \vec{F} \cdot d\vec{r}$. (Recommendation: If this problem is taking you more than 2 minutes, go on to other problems and return to this one if you have time.)

- IV. A vector field $P\vec{i} + Q\vec{j}$ is shown to the right (on the (9) y-axis, it consists of the zero vector at each point).
 - 1. Tell whether $\frac{\partial P}{\partial x}$ is positive, negative, or zero.

- V. A curve C is parameterized as $\vec{r}(t) = \sin(t)\vec{i} + t^2\vec{j}$ for $-1 \le t \le \pi$. Using this parameterization, express each of the following as an ordinary definite integral of a function of t, but do not try to calculate the actual values of the integrals.
 - $1. \ \int_C xy^2\,ds$

 $2. \int_C xy^2 dx$

3. $\int_C (x\vec{\imath} + y^2\vec{\jmath}) \cdot d\vec{r}$

4. For a wire bent in the shape of C, with density $\rho(x,y) = x + 3$, the moment of the wire with respect to the y-axis

VI. Calculate $\operatorname{curl}(-y\vec{\imath} + z\vec{\jmath} - x\vec{k})$.

(5)

VII. The figure to the right shows a surface S which is (10) the portion of the cylinder $x^2 + z^2 = 1$ that lies between y = 0 and x + y = 2, and a point P which lies in the front part of S (the coordinates of P are approximately $\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, \frac{1}{2}\right)$). Let θ be the polar angle in the xz-plane, and let h be the distance from the xz-plane. These define parameters on S.

1. Give x, y, and z in terms of θ and h.

3. At the point P, draw and label the curve on S where θ is constant, and the curve where h is constant. Draw and label the vectors \vec{r}_{θ} and \vec{r}_{h} at the point P, and draw the unit outward normal vector at P.

4. Is the unit outward normal vector $\vec{r}_{\theta} \times \vec{r}_{h}$, or is it $\vec{r}_{h} \times \vec{r}_{\theta}$?