I. Let D be the domain in the plane consisting of all (x, y) with $x>0$. It is simply-connected.
(6)

1. Use partial derivatives to verify that the vector field $\left(\frac{y}{x}+x\right) \vec{\imath}+(\ln (x)+y) \vec{\jmath}$ is conservative.
2. Find a function $f(x, y)$ with $\nabla f=\left(\frac{y}{x}+x\right) \vec{\imath}+(\ln (x)+y) \vec{\jmath}$
II. Let R be the rectangle in the plane with vertices the points $(2,3),(5,3),(2,4)$, and (5,4). Let C be the (6) boundary of R, with the positive orientation. For each of the following, use a version of Green's Theorem to carry out an easy calculation of the given integral. (Recommendation: If this problem is taking you more than 2 minutes, go on to other problems and return to this one if you have time.)
3. $\int_{C}\left(x y^{4}+y\right) d x+\left(2 x^{2} y^{3}-x\right) d y$.
4. $\int_{C}\left(\left(2 x^{2} y^{3}+x\right) \vec{\imath}+\left(3 y-x y^{4}\right) \vec{\jmath}\right) \cdot \vec{n} d s$, where \vec{n} is the unit outward normal of C.
III. Let C be the portion of the graph $y=\tan (x)$ that runs from $(\pi / 4,1)$ to $(\pi / 3, \sqrt{3})$, and let \vec{F} be the (5) gradient of the function $f(x, y)=\frac{\ln (y) \tan x}{y}$. Calculate $\int_{C} \vec{F} \cdot d \vec{r}$. (Recommendation: If this problem is taking you more than 2 minutes, go on to other problems and return to this one if you have time.)
IV. A vector field $P \vec{\imath}+Q \vec{\jmath}$ is shown to the right (on the (9) y-axis, it consists of the zero vector at each point).
5. Tell whether $\frac{\partial P}{\partial x}$ is positive, negative, or zero.
6. Tell whether $\frac{\partial Q}{\partial x}$ is positive, negative, or zero.

7. Tell whether $\frac{\partial Q}{\partial y}$ is positive, negative, or zero.
8. If C is the line segment from $(0,0)$ to $(1,1)$, tell whether $\int_{C}(P \vec{\imath}+Q \vec{\jmath}) \cdot d \vec{r}$ is positve, negative, or zero.
9. If C is the line segment from $(0,0)$ to $(1,-1)$, tell whether $\int_{C}(P \vec{\imath}+Q \vec{\jmath}) \cdot d \vec{r}$ is positve, negative, or zero.
10. If C is the unit circle, oriented counterclockwise, tell whether $\int_{C}(P \vec{\imath}+Q \vec{\jmath}) \cdot d \vec{r}$ is positve, negative, or zero.
V. A curve C is parameterized as $\vec{r}(t)=\sin (t) \vec{\imath}+t^{2} \vec{\jmath}$ for $-1 \leq t \leq \pi$. Using this parameterization, express
(12) each of the following as an ordinary definite integral of a function of t, but do not try to calculate the actual values of the integrals.
11. $\int_{C} x y^{2} d s$
12. $\int_{C} x y^{2} d x$
13. $\int_{C}\left(x \vec{\imath}+y^{2} \vec{\jmath}\right) \cdot d \vec{r}$
14. For a wire bent in the shape of C, with density $\rho(x, y)=x+3$, the moment of the wire with respect to the y-axis
VI. Calculate $\operatorname{curl}(-y \vec{\imath}+z \vec{\jmath}-x \vec{k})$.
VII. The figure to the right shows a surface S which is
(10) the portion of the cylinder $x^{2}+z^{2}=1$ that lies between $y=0$ and $x+y=2$, and a point P which lies in the front part of S (the coordinates of P are approximately $\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, \frac{1}{2}\right)$). Let θ be the polar angle in the $x z$-plane, and let h be the distance from the $x z$-plane. These define parameters on S.

15. Give x, y, and z in terms of θ and h.
16. Tell the parameter domain R mathematically (that is, in terms of inequalities involving θ and h), and make an accurate drawing of it in the θ-plane shown at the right (label the coordinate axes correctly).

17. At the point P, draw and label the curve on S where θ is constant, and the curve where h is constant. Draw and label the vectors \vec{r}_{θ} and \vec{r}_{h} at the point P, and draw the unit outward normal vector at P.
18. Is the unit outward normal vector $\vec{r}_{\theta} \times \vec{r}_{h}$, or is it $\vec{r}_{h} \times \vec{r}_{\theta}$?
