I. Analyze the convergence behavior of $\sum_{n=2}^{\infty} (-1)^n \frac{(2x+3)^n}{n \ln(n)}$ for all possible values of x. (8)

II. Draw the following sets of points in xyz-coordinate systems. (12)

1. The points whose xyz coordinates satisfy $x^2 - y^2 + z^2 = 1$.

- 2. The points whose xyz coordinates satisfy $x^2 y^2 + z^2 = -1$.
- 3. The points whose spherical coordinates satisfy $\rho = \phi$.
- 4. The curve parameterized in spherical coordinates as $\rho = 1$, $\theta = t$, and $\phi = \frac{\pi}{2} \sin(4\pi t)$, for $0 \le t \le \pi/2$. (Recall that $\sin(4\pi t)$ has period 1/2.)

III. In the right triangle shown to the right, CD is drawn perpen-(6) dicular to AB, DE is drawn perpendicular to BC, and this process is continued forever. Find the total of all the lengths $|CD| + |DE| + \cdots$.

IV. For the series $\sum_{n=1}^{\infty} \frac{n+1}{n 2^n}$, use each of the following tests to verify that the series converges: Comparison (14) Test, Ratio Test, Limit Comparison Test, Root Test.

V. Let $\vec{r}(t)$ be the vector-valued function $3t^2\vec{i} + 2t\vec{j} + \sin(\pi t)\vec{k}$.

- (6)
 - 1. Calculate expressions for $\vec{r}'(t)$ and $\vec{T}(t)$.
 - 2. Write a definite integral whose value is the length of this curve from the point (0,0,0) to (3,2,0), but do not try to evaluate the integral.
- **VI**. Let *a* be a fixed real number.

(8)

- 1. Calculate directly the Taylor series $\sum_{n=0}^{\infty} c_n (x-a)^n$ of e^x centered at a.
- 2. Take as known the fact that this Taylor series converges to e^x for every value of x. Use the series to show that $e^x = e^a e^{x-a}$.
- 3. By substituting b = x a, obtain a familiar property of the exponential function.

VII. Show that if a particle moves with constant speed, it velocity and acceleration vectors are perpendicular. (4)

VIII. Use power series to verify Euler's Formula: $e^{ix} = \cos(x) + i\sin(x)$ (where $i = \sqrt{-1}$).

(6)

- **IX**. Let C be the circle parameterized as $\vec{r}(t) = 3\cos(t)\vec{i} + 3\sin(t)\vec{j}$.
- (10)
 - 1. Calculate ds algebraically, and explain the result geometrically.
 - 2. Use ds to compute the arclength function s, assuming that s = 0 when t = 0.
 - 3. Write an expression for the unit tangent vector $\vec{T}(s)$ as a function of arclength.
 - 4. Calculate the curvature κ (if you do not have a usable expression for $\vec{T}(s)$, just tell how κ and $\vec{T}(s)$ are related).
- **X**. Let $\vec{r}(t)$ be a vector-valued function and let $\vec{T}(t)$ be its unit tangent vector. Verify that $\vec{T}'(t)$ is perpendicular (4) to $\vec{T}(t)$.
- XI. Let f(x) be the function with $f(x) = x^2$ for $x \ge 0$ and $f(x) = -x^2$ for $x \le 0$. There is no power series (4) $\sum_{n=0}^{\infty} a_n x^n$ which equals f(x) on any interval (-R, R) containing 0. Why not?

XII. Let $\vec{v} = v_1\vec{i} + v_2\vec{j} + v_3\vec{k}$ and $\vec{w} = w_1\vec{i} + w_2\vec{j} + w_3\vec{k}$ be arbitrary vectors, and let θ be the angle between \vec{v} (6) and \vec{w} . Use the Law of Cosines, $c^2 = a^2 + b^2 - 2ab\cos(\theta)$, to verify that $\vec{v} \cdot \vec{w} = \|\vec{v}\| \|\vec{w}\| \cos(\theta)$.

- **XIII.** In the coordinate system to the right, the vectors \vec{v} and
- (5) \vec{w} lie near the coordinate axes, and the vector \vec{u} ends at a point *P*. The point *P* moves, keeping its *y* and *z* coordinates the same, but increasing its *x* coordinate. How does the number $\vec{u} \cdot (\vec{v} \times \vec{w})$ change? Why?

XIV. Find a good expression for $\int \frac{\sin(x)}{x} dx$. (4)

XV. Use the expression $R_n(x) = f^{n+1}(c) \frac{(x-a)^{n+1}}{(n+1)!}$ to verify that for each $x \ge 0$, the Maclaurin series of e^x (6) converges to e^x .