I. Analyze the convergence behavior of $\sum_{n=2}^{\infty}(-1)^{n} \frac{(2 x+3)^{n}}{n \ln (n)}$ for all possible values of x.
(8)
II. Draw the following sets of points in $x y z$-coordinate systems.

1. The points whose $x y z$ coordinates satisfy $x^{2}-y^{2}+z^{2}=1$.
2. The points whose $x y z$ coordinates satisfy $x^{2}-y^{2}+z^{2}=-1$.
3. The points whose spherical coordinates satisfy $\rho=\phi$.
4. The curve parameterized in spherical coordinates as $\rho=1, \theta=t$, and $\phi=\frac{\pi}{2}-\sin (4 \pi t)$, for $0 \leq t \leq \pi / 2$. (Recall that $\sin (4 \pi t)$ has period $1 / 2$.)
III. In the right triangle shown to the right, CD is drawn perpen-
(6) dicular to AB, DE is drawn perpendicular to BC , and this process is continued forever. Find the total of all the lengths $|\mathrm{CD}|+|\mathrm{DE}|+\cdots$.

IV. For the series $\sum_{n=1}^{\infty} \frac{n+1}{n 2^{n}}$, use each of the following tests to verify that the series converges: Comparison
(14) Test, Ratio Test, Limit Comparison Test, Root Test.
V. Let $\vec{r}(t)$ be the vector-valued function $3 t^{2} \vec{\imath}+2 t \vec{\jmath}+\sin (\pi t) \vec{k}$.
(6)
5. Calculate expressions for $\vec{r}^{\prime}(t)$ and $\vec{T}(t)$.
6. Write a definite integral whose value is the length of this curve from the point $(0,0,0)$ to $(3,2,0)$, but do not try to evaluate the integral.
VI. Let a be a fixed real number.
(8)
7. Calculate directly the Taylor series $\sum_{n=0}^{\infty} c_{n}(x-a)^{n}$ of e^{x} centered at a.
8. Take as known the fact that this Taylor series converges to e^{x} for every value of x. Use the series to show that $e^{x}=e^{a} e^{x-a}$.
9. By substituting $b=x-a$, obtain a familiar property of the exponential function.
VII. Show that if a particle moves with constant speed, it velocity and acceleration vectors are perpendicular. (4)
VIII. Use power series to verify Euler's Formula: $e^{i x}=\cos (x)+i \sin (x) \quad$ (where $\left.i=\sqrt{-1}\right)$.
(6)
IX. Let C be the circle parameterized as $\vec{r}(t)=3 \cos (t) \vec{\imath}+3 \sin (t) \vec{\jmath}$.
(10)
10. Calculate $d s$ algebraically, and explain the result geometrically.
11. Use $d s$ to compute the arclength function s, assuming that $s=0$ when $t=0$.
12. Write an expression for the unit tangent vector $\vec{T}(s)$ as a function of arclength.
13. Calculate the curvature κ (if you do not have a usable expression for $\vec{T}(s)$, just tell how κ and $\vec{T}(s)$ are related).
X. Let $\vec{r}(t)$ be a vector-valued function and let $\vec{T}(t)$ be its unit tangent vector. Verify that $\vec{T}^{\prime}(t)$ is perpendicular (4) to $\vec{T}(t)$.
XI. Let $f(x)$ be the function with $f(x)=x^{2}$ for $x \geq 0$ and $f(x)=-x^{2}$ for $x \leq 0$. There is no power series $\sum_{n=0}^{\infty} a_{n} x^{n}$ which equals $f(x)$ on any interval $(-R, R)$ containing 0 . Why not?
XII. Let $\vec{v}=v_{1} \vec{\imath}+v_{2} \vec{\jmath}+v_{3} \vec{k}$ and $\vec{w}=w_{1} \vec{\imath}+w_{2} \vec{\jmath}+w_{3} \vec{k}$ be arbitrary vectors, and let θ be the angle between \vec{v} (6) and \vec{w}. Use the Law of Cosines, $c^{2}=a^{2}+b^{2}-2 a b \cos (\theta)$, to verify that $\vec{v} \cdot \vec{w}=\|\vec{v}\|\|\vec{w}\| \cos (\theta)$.
XIII. In the coordinate system to the right, the vectors \vec{v} and \vec{w} lie near the coordinate axes, and the vector \vec{u} ends at a point P. The point P moves, keeping its y and z coordinates the same, but increasing its x coordinate. How does the number $\vec{u} \cdot(\vec{v} \times \vec{w})$ change? Why?

XIV. Find a good expression for $\int \frac{\sin (x)}{x} d x$.
XV. Use the expression $R_{n}(x)=f^{n+1}(c) \frac{(x-a)^{n+1}}{(n+1)!}$ to verify that for each $x \geq 0$, the Maclaurin series of e^{x} converges to e^{x}.
