Instructions: Give brief, clear answers. If needed, take as known the convergence behavior of the geometric series $\sum r^n$ and the *p*-series $\sum \frac{1}{n^p}$.

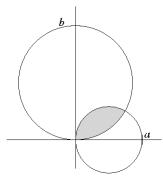
Name (please print)

I. Use the Integral Test to check that $\sum \frac{1}{n}$ diverges. Draw a picture showing the underlying geometric reason (6) for the divergence.

- II. State the Monotonicity Theorem for sequences. Why is it a theorem not so much about sequences as about(6) the real numbers?
- III. Use the Alternating Series Test to show that the series $\sum_{n=1}^{\infty} \frac{(-1)^n}{n^n}$ converges. Use the Ratio Test and the limit $\lim_{x \to \infty} (1 + \frac{c}{x})^x = e^c$ to show that it converges absolutely.

IV. Use the formula $ds = \sqrt{r^2 + \left(\frac{dr}{d\theta}\right)^2} d\theta$ to calculate ds if $r^2 = \cos(2\theta)$. Simplify the resulting expression. (5)

- V. Give examples of:
- ⁽⁸⁾1. A divergent series of positive terms $\sum a_n$ for which $\sum a_n^2$ is convergent.
 - 2. A convergent series $\sum a_n$ such that $\sum a_n^2$ is divergent.
- VI. Write a sum of two definite integrals in polar coordinates whose value is the
- (5) area of the shaded region in the diagram to the right, but *do not* evaluate the integrals or proceed further with finding the area.



VII. Calculate $\sum_{n=0}^{\infty} \cos^{2n}(\theta)$ (the answer is $\csc^2(\theta)$).

VIII. Describe the motion of a particle P that moves according to the parametric equations $x = \cos(\cos(t))$, (5) $y = \sin(\cos(t))$.

IX. For each of the following series, determine whether the series is convergent or divergent, and give an (12) explanation of your reasoning.

- 1. $\sum_{k=1}^{\infty} k^{-2.3}$ 2. $\sum_{n=1}^{\infty} a_n^2$, given that $\sum a_n$ is absolutely convergent (hint: for large n, $|a_n| < 1$)
- 3. $\sum_{n=1}^{\infty} \ln(a_n)$, given that $\sum a_n$ is a convergent series with positive terms