Instructions: Give brief, clear answers. If needed, use Taylor's Theorem, which asserts that for $f(x) - T_n(x) = R_n(x,a) = \int_a^x \frac{(x-t)^n}{n!} f^{(n+1)}(t) dt$ (where $T_n(x) = \sum_{k=0}^n \frac{f^{(k)}(a)}{k!} (x-a)^k$), and use Lagrange's form for the remainder, $R_n(x,a) = f^{(n+1)}(c) \frac{(x-a)^{n+1}}{(n+1)!}$ for some c between a and x.

I. Find a power series representation for the function $f(x) = \frac{x}{x+5}$ and determine its interval of convergence. (6)

II. Using the fact that $\frac{d}{dx}(\tan^{-1}(x)) = \frac{1}{1+x^2}$, find the Maclaurin series of $\tan^{-1}(x)$.

III. Write the Maclaurin series of e^x . Verify that it equals e^x for all x, by showing that $\lim_{n \to \infty} R_n(x, 0) = 0$ for (6) each fixed value of x.

IV. For a certain power series $\sum_{n=0}^{\infty} c_n x^n$, it is known that $\sum_{n=0}^{\infty} c_n$ converges. (6)

1. If $\sum_{n=0}^{\infty} (-1)^n c_n$ diverges, what can be said about the radius of convergence R?

2. If $\sum_{n=0}^{\infty} (-2)^n c_n$ diverges, what can be said about the radius of convergence R?

V. For the function $f(x) = x^2$, calculate the coefficients in the Taylor series $\sum_{n=0}^{\infty} c_n (x-10)^n$. Use Lagrange's form of the remainder $R_3(x, 10)$ to verify that f(x) equals the value of its Taylor series for all x.

VI. Find the
$$c_n$$
 for which $\int \frac{1-\cos(x)}{x^2} dx = C + \sum_{n=0}^{\infty} c_n x^{2n+1}$.

VII. Find the intersection of the sphere $(x - 7)^2 + (y + 8)^2 + (z - 9)^2 = 64$ with each of the three coordinate (6) planes (the *xy*-plane, the *xz*-plane, and the *yz*-plane).

VIII. Describe in words the region in \mathbb{R}^3 represented by the inequality $\frac{1}{4} < x^2 + y^2 + z^2 \leq 5$. (4)

IX. A certain series $\sum c_n$ converges.

⁽⁶⁾1. Can the alternating series convergence criterion be applied to $\sum (-1)^n c_n$? Why or why not?

2. Suppose that $\lim_{n \to \infty} \frac{|c_{n+1}|}{|c_n|}$ exists and equals L. What can be said about L?

X. A certain series $\sum c_n$ converges. All c_n are positive. (6)

1. Can the alternating series convergence criterion be applied to $\sum_{n=0}^{\infty} (-1)^n c_n$? Why or why not?

2. Suppose that
$$\lim_{n\to\infty} \frac{|c_{n+1}|}{|c_n|}$$
 exists and equals L. What can be said about L?