Instructions: Give brief, clear answers. If needed, use Taylor's Theorem, which asserts that for $f(x)-T_{n}(x)=$ $R_{n}(x, a)=\int_{a}^{x} \frac{(x-t)^{n}}{n!} f^{(n+1)}(t) d t$ (where $\left.T_{n}(x)=\sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!}(x-a)^{k}\right)$, and use Lagrange's form for the remainder, $R_{n}(x, a)=f^{(n+1)}(c) \frac{(x-a)^{n+1}}{(n+1)!}$ for some c between a and x.
I. Find a power series representation for the function $f(x)=\frac{x}{x+5}$ and determine its interval of convergence.
II. Using the fact that $\frac{d}{d x}\left(\tan ^{-1}(x)\right)=\frac{1}{1+x^{2}}$, find the Maclaurin series of $\tan ^{-1}(x)$.
III. Write the Maclaurin series of e^{x}. Verify that it equals e^{x} for all x, by showing that $\lim _{n \rightarrow \infty} R_{n}(x, 0)=0$ for (6) each fixed value of x.
IV. For a certain power series $\sum_{n=0}^{\infty} c_{n} x^{n}$, it is known that $\sum_{n=0}^{\infty} c_{n}$ converges.
(6)

1. If $\sum_{n=0}^{\infty}(-1)^{n} c_{n}$ diverges, what can be said about the radius of convergence R ?
2. If $\sum_{n=0}^{\infty}(-2)^{n} c_{n}$ diverges, what can be said about the radius of convergence R ?
V. For the function $f(x)=x^{2}$, calculate the coefficients in the Taylor series $\sum_{n=0}^{\infty} c_{n}(x-10)^{n}$. Use Lagrange's
(8) form of the remainder $R_{3}(x, 10)$ to verify that $f(x)$ equals the value of its Taylor series for all x.
VI. Find the c_{n} for which $\int \frac{1-\cos (x)}{x^{2}} d x=C+\sum_{n=0}^{\infty} c_{n} x^{2 n+1}$.
(6)
VII. Find the intersection of the sphere $(x-7)^{2}+(y+8)^{2}+(z-9)^{2}=64$ with each of the three coordinate (6) planes (the $x y$-plane, the $x z$-plane, and the $y z$-plane).
VIII. Describe in words the region in \mathbb{R}^{3} represented by the inequality $\frac{1}{4}<x^{2}+y^{2}+z^{2} \leq 5$.
IX. A certain series $\sum c_{n}$ converges.
${ }^{(6)} 1$. Can the alternating series convergence criterion be applied to $\sum(-1)^{n} c_{n}$? Why or why not?
3. Suppose that $\lim _{n \rightarrow \infty} \frac{\left|c_{n+1}\right|}{\left|c_{n}\right|}$ exists and equals L. What can be said about L ?
X. A certain series $\sum c_{n}$ converges. All c_{n} are positive.
(6)
4. Can the alternating series convergence criterion be applied to $\sum_{n=0}^{\infty}(-1)^{n} c_{n}$? Why or why not?
5. Suppose that $\lim _{n \rightarrow \infty} \frac{\left|c_{n+1}\right|}{\left|c_{n}\right|}$ exists and equals L. What can be said about L ?
