(5)

I. Let L be the line which is the intersection of the planes 2x + 3y - z = 7 and x - y + 2z = 1. Give parametric (7) equations for L.

II. Let Q and R be distinct points on a line L, and let P be any point. Let \vec{a} be the vector from Q to P, and

 \vec{b} the vector from Q to R. Use the fact that $\|\vec{a} \times \vec{b}\|$ is the area of the parallelogram spanned by \vec{a} and \vec{b} to give a geometric proof that the distance from P to L is $\frac{\|\vec{a} \times \vec{b}\|}{\|\vec{b}\|}$.

- III. In the picture to the right, the vector \vec{c} equals $\|\vec{b}\| \|\vec{a} + \|\vec{a}\| \|\vec{b}\|$. All three vectors (8) lie in the plane of this piece of paper.
 - 1. Use the dot product to check that \vec{c} bisects the angle between \vec{a} and \vec{b} .
 - 2. Tell geometrically why $\vec{c} \times \vec{a}$ and $\vec{c} \times \vec{b}$ point in opposite directions.
 - 3. Verify algebraically that $\vec{c} \times \vec{a}$ and $\vec{c} \times \vec{b}$ point in opposite directions.
- **IV**. Graph the following sets of points in a single standard xyz-coordinate system. (6)
 - 1. The points whose spherical coordinates satisfy $1 \le \rho \le 2$, $\theta = \pi/2$, and $0 \le \phi \le 3\pi/4$.
 - 2. The points whose spherical coordinates satisfy $\rho = 1, 0 \le \theta \le \pi$, and $\phi = \pi/2$.
 - 3. The point whose spherical coordinates are $\rho = 1$, $\theta = 3\pi/2$, and $\phi = 1.5$.
- V. 1. Use the figure to the right to prove the law of cosines, (8) $c^2 = a^2 + b^2 - 2ab \cos(\theta).$
 - 2. If $\vec{v} = v_1 \vec{i} + v_2 \vec{j}$ and $\vec{w} = w_1 \vec{i} + w_2 \vec{j}$ are vectors in the plane, verify that $\vec{v} \cdot \vec{w} = \|\vec{v}\| \|\vec{w}\| \cos(\theta)$, where θ is the angle between \vec{v} and \vec{w} .

VI. Let C be the cube $0 \le x \le 1$, $0 \le y \le 1$, and $0 \le z \le 1$. (10)

- 1. Write an equation for the smallest sphere that encloses C.
- 2. Find the cosine of the angle between the diagonal (starting at the origin) of the face of C in the xy-plane and the diagonal of the face in the yz-plane.
- 3. Find the volume of the parallelepiped spanned by the diagonals of the three faces that lie in the three coordinate planes.

- **VII**. In the picture to the right, there are three surfaces (one of which has two
- (6) connected pieces) which have equations of the form $Ax^2 + By^2 + Cz^2 = D$, where each of A, B, C, and D is an element of the set $\{-1, 0, 1\}$. Write the three equations, indicating which equation corresponds to which surface.

VIII. Find an equation for the tangent plane to the sphere $x^2 + y^2 + z^2 = 6z$ at the point (2, 1, 1). (5)

- **IX**. Use the figure to the right to calculate x, y, and z in terms of
- (5) $\rho, \theta, \text{ and } \phi$.

