I. Calculate the following.
(15)

1. The maximum rate of change of the function $f(x, y)=\ln \left(x^{2}+y^{4}\right)$ at the point $(2,1)$, and the direction in which it occurs.
2. $\frac{\partial x}{\partial f}$ if $x(f, g)=e^{f g}$.
3. $\frac{\partial z}{\partial x}$ if $x y=\sin \left(z^{2}\right)$.
4. $\frac{\partial f}{\partial x_{5}}$ if $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\sqrt{x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2}}$.
5. $d z$ if $z=x^{2}+\ln \left(y^{2}\right)$
II. In the figure below, the $x y z$-coordinate system on the left shows the graph of a certain function of two (3) variables. The portion shown here has $z \geq 0$. In the $x y$-coordinate system on the right, sketch some level curves for the function, including the one through $(0,0)$.

III. Write the chain rule for $\frac{\partial a}{\partial b}$ if $a=a(x, y, z, w), x=x(b, c), y=y(b, c), z=z(b, c)$, and $w=w(b, c)$.
IV. Find the limit, if it exists, or show that the limit does not exist: $\lim _{(x, y, z) \rightarrow(0,0,0)} \frac{x y+y z^{2}+x z^{2}}{x^{2}+y^{2}+z^{4}}$.
(4)
V. Some level lines of a certain function $g(x, y)$ near (6) a point P are shown to the right. Answer the following, assuming the most likely behavior of g indicated by the values of g on these level lines.
6. Is $\frac{\partial g}{\partial x}$ is positive, negative, or zero?
7. Is $\frac{\partial^{2} g}{\partial y^{2}}$ is positive, negative, or zero?

8. Draw ∇g at P.
VI. The figure to the right shows the (4) graph of a function $f(x, y)$ near a certain point $\left(x_{0}, y_{0}\right)$, and the tangent plane to the graph of f at the point $\left(x_{0}, y_{0}, f\left(x_{0}, y_{0}\right)\right)$. The points P and Q lie on the tangent plane. Suppose that $f\left(x_{0}, y_{0}\right)=2$, $f_{x}\left(x_{0}, y_{0}\right)=-0.2$ and $f_{y}\left(x_{0}, y_{0}\right)=$ 0.3. In terms of Δx and Δy, find the z-coordinate of P and the z coordinate of Q.

The z-coordinate of P is:
The z-coordinate of Q is:

VII. Calculate the following.
(16)

1. The directional derivative of g at $(1,2)$ in the direction toward $(0,3)$, if $\nabla g(x, y)=4 x y^{2} \vec{\imath}+4 x^{2} y \vec{\jmath}$.
2. All critical points of the function $f(x, y)=x y-2 x-y$.
3. The absolute maximum and the absolute minimum of the function $h(x, y)=x^{2}+y^{2}+x^{2} y$ on the boundary of the square $D=\{(x, y)| | x|\leq 1,|y| \leq 1\}$.
4. The number c if for a certain function $f(x, y), \frac{\partial f}{\partial x}=5 x y+\frac{1}{\sqrt{1-\sin \left(x^{3}\right)}}$ and $\frac{\partial f}{\partial y}=8 \tan ^{-1}(y)+c x^{2}$.
