- **I**. For each of the following, write a double integral whose value is the quantity described in the problem.
- (12) Supply limits of integration, in the appropriate coordinates for the domain, but *do not* calculate the value of the integral.
 - 1. The area of one loop of the rose $r = \cos(3\theta)$.

2. The mass of a lamina that occupies the region in the xy-plane with $x \ge 0$, $y \ge 0$, and $1 \le x^2 + y^2 \le 2$, if the density is twice the distance from the origin.

3. The x-coordinate of the center of mass of the lamina in the previous problem.

4. The volume under the graph of the function $\sin^2(xy)$ and over the triangle with vertices (0,0), (1,1), and (2,0).

II . (4)	A table of values is given for a function $f(x, y)$ defined on $R = [0, 4] \times [1, 9]$:
(4)	

y = x =	3	5	7
1	4	-3	7
3	3	1	2

Estimate $\iint_R f(x, y) dA$ using the midpoint rule with m = n = 2 (that is, calculate the numerical values of the Riemann sum where the *x*-interval is partitioned into two equal intervals and the *y*-interval is partitioned into two equal intervals, and the value of the function is taken at the center of each rectangle).

- **III**. The picture to the right shows two vectors \vec{v} and \vec{w} , and the angle
- (4) θ between them. Assume that $\|\vec{v}\| = 5$, $\|\vec{w}\| = 3$, and $\vec{v} \cdot \vec{w} = 9$.
 - 1. Use the geometric meaning of the dot product to calculate $\cos(\theta)$.

- 2. Use $\cos(\theta)$ to calculate $\sin(\theta)$.
- 3. Calculate the area of the parallelogram spanned by \vec{v} and \vec{w} .

IV. Consider an integral $\iint_R f(x, y) dA$, where *R* is the region which lies between the graphs of $y = \cos(x)$ and (4) $y = -\cos(x)$ and between the lines $x = \frac{\pi}{2}$ and $x = \frac{3\pi}{2}$. Supply limits of integration for this integral.

V. Evaluate each of the following multiple integrals. (15)

1.
$$\iint_R \frac{x}{1+y^2} dA$$
 where R is the rectangle $0 \le x \le 5$ and $0 \le y \le 1$.

2. $\iint_R \frac{1}{1+x^2+y^2} dA$, where R is the region in the first quadrant between the circles $x^2+y^2 = 1$ and $x^2+y^2 = 3$.

3. $\int_0^1 \int_{2y}^2 e^{x^2} dx dy$ (Hint: Change the order of integration.)

Page 4

- **VI**. Calculate the surface area of the portion of $z = 2 x^2 y^2$ that lies above the *xy*-plane.
- (6)

VII. Let *E* be upper half of the solid ball of radius 1, that is, the points with $x^2 + y^2 + z^2 \le 1, z \ge 0$. Use spherical coordinates to calculate $\iiint_E z \, dV$. (Recall that $x = \rho \cos(\theta) \sin(\phi), y = \rho \sin(\theta) \sin(\phi), z = \rho \cos(\phi)$, and $dV = \rho^2 \sin(\phi) \, d\phi \, d\theta \, dz$.)