I. Calculate each of the following.

1. $\int_{C} \nabla f \cdot d \vec{r}$, where $f(x, y)=\sqrt{\sin \left(x^{2}\right)+\cos (x y)}$ and C is the portion of the unit circle in the $x y$-plane from $(1,0)$ to $(0,1)$.
2. $\iint_{R} 2 x y d A$, where R is the region in the $x y$-plane bounded by the parabolas $y=x^{2}$ and $x=y^{2}$.
3. $\left.\int_{C}\left(e^{x^{3}+x} \sin (x)+y^{3}\right) \vec{\imath}+\left(y^{\sin (y)}-x^{3}\right) \vec{\jmath}\right) \cdot d \vec{r}$, where C is the unit circle oriented counterclockwise.
II. Calculate $\iint_{S}\left(\left(e^{z}+x^{2}\right) \vec{\imath}-\left(x^{2} y-\sin \left(z^{2}\right)\right) \vec{\jmath}+\left(x^{2} y+1\right) \vec{k}\right) \cdot d \vec{S}$, where S is the surface of the region bounded (6) by the three coordinate planes and the planes $x=1, y=2$, and $z=3$.
III. Verify Stokes' Theorem for the vector field $\vec{F}(x, y, z)=y \vec{\imath}-x \vec{\jmath}+z \vec{k}$ and the surface S which is the part (8) of the paraboloid $z=1-x^{2}-y^{2}$ that lies above the $x y$-plane, with the upward normal.
IV. Let C be a curve parameterized by $\vec{r}(t)=\cos (t) \vec{\imath}+t^{2} \vec{\jmath}, 0 \leq t \leq 1$. Write the following as integrals in (4) terms of t, but do not try to evaluate them numerically.
4. $\int_{C} x y^{2} d s$
5. $\int_{C} x y^{2} d y$
V. Use a parameterization of the unit circle to find the maximum value of the function $g(x, y)=x^{3} y$ on the
(6) unit circle, and to find the points where it occurs. (The maximum value is $\frac{3 \sqrt{3}}{16}$, which occurs at one point in the first quadrant and one point in the third quadrant.)
VI. Let T be the triangle with vertices $(1,0,0),(0,1,0)$, and $(0,0,1)$, which lies in the plane $x+y+z=1$.
(6) Let C be the boundary of T, oriented counterclockwise as viewed from above. Take as known the fact that $\operatorname{curl}\left(\left(x+y^{2}\right) \vec{\imath}+\left(y+z^{2}\right) \vec{\jmath}+\left(z+x^{2}\right) \vec{k}\right)=-2 z \vec{\imath}-2 x \vec{\jmath}-2 y \vec{k}$. Use Stokes' Theorem to calculate $\int_{C}\left(\left(x+y^{2}\right) \vec{\imath}+\left(y+z^{2}\right) \vec{\jmath}+\left(z+x^{2}\right) \vec{k}\right) \cdot d \vec{r}$.
VII. Consider a constant vector field $a \vec{\imath}+b \vec{\jmath}+c \vec{k}$, and let S be a surface that bounds a solid E. Use a theorem (4) to show that $\iint_{S}(a \vec{\imath}+b \vec{\jmath}+c \vec{k}) \cdot d \vec{S}=0$. Explain the result geometrically using the interpretation of the surface integral as measuring the flux (i. e. the flow) across S.
VIII. Find all critical points of $f(x, y)=x^{3} y+4 x^{2}-8 y$.
IX. Give a geometric explanation of why $d A=r d r d \theta$ in polar coordinates.
X. Make a decent drawing of a saddle critical point.
(3)
XI. In a standard $x y z$-coordinate system, sketch the region of integration for $\int_{\pi / 2}^{\pi} \int_{\pi}^{2 \pi} \int_{0}^{1} f(\rho, \theta, \phi) d \rho d \theta d \phi$.
XII. Let C be the circle of radius R centered at the origin in the $x y$-plane, and oriented counterclockwise. Use (4) a parameterization of C and direct calculation to find $\int_{C}\left(\frac{-y}{x^{2}+y^{2}} \vec{\imath}+\frac{x}{x^{2}+y^{2}} \vec{\jmath}\right) \cdot d \vec{r}$. Why does the result of this calculation show that $\frac{-y}{x^{2}+y^{2}} \vec{\imath}+\frac{x}{x^{2}+y^{2}} \vec{\jmath}$ is not conservative?
XIII. Let S be the surface parameterized by $\left(u^{2}-v^{2}, \cos (u v), u / v\right)$. The point $(-1,1,0)$ on S corresponds to the (5) point $(u, v)=(0,1)$ in the parameter domain. Calculate a unit normal vector to S at the point $(-1,1,0)$. (Hint: use \vec{r}_{u} and \vec{r}_{v}.)
XIV. For the function $f(t, u, v)=t^{2} u v^{3}$, calculate ∇f, and use it to find the rate of change of f at $(1,1,1)$ in (4) the direction toward $(3,1,-1)$.
XV. Verify the Divergence Theorem for the vector field $x \vec{\imath}+y \vec{\jmath}+z \vec{k}$ on the unit sphere S in $x y z$-space (no (6) antiderivatives are needed to calculate the integrals).
