I. Let $f(x, y)=x^{2} y^{3}$.
(8)

1. Calculate $\nabla f(x, y)$ and $\nabla f(-2,1)$.
2. Find the largest directional derivative of f at the point $(-2,1)$, and the direction in which it occurs.
3. Find the directional derivative of f at the point $(-2,1)$, in the direction toward $(-3,3)$.
4. Write an equation for the tangent line to the level curve of f through the point $(-2,1)$.
II. The figure to the right shows the graph of a function
(6) $\quad f(x, y)$ with domain the points (x, y) with $-1 \leq x \leq 1$ and $-1 \leq y \leq 1$. Answer the following questions, based on the apparent behavior of f shown on the graph.
5. At what points (x, y) is $f_{x}(x, y)<0$?
6. At what points (x, y) is $f_{x}(x, y)>0$?
7. At what points (x, y) is $f_{y}(x, y)<0$?
8. At what points (x, y) is $f_{y}(x, y)>0$?
9. At what points (x, y) is $f_{x x}(x, y)>0$?
10. At what points (x, y) is $f_{y y}(x, y)>0$?

III. Calculate each of the following.
(9)
11. $f_{z}(x, y, z)$ if $f(x, y, z)=e^{x^{2} y \sin (z)}$
12. $\frac{\partial R}{\partial R_{1}}$ if $\frac{1}{R^{3}}=\frac{1}{R_{1}^{2}}+\frac{1}{R_{2}^{2}}+\frac{1}{R_{3}^{2}}$, using implicit differentiation.
13. $d\left(x y / z^{2}\right)$
IV. Calculate $\left(\vec{\imath}+f_{x}\left(x_{0}, y_{0}\right) \vec{k}\right) \times\left(\vec{\jmath}+f_{y}\left(x_{0}, y_{0}\right) \vec{k}\right)$. Tell how the resulting vector is related to the surface (4) $z=f(x, y)$ at the point $\left(x_{0}, y_{0}, z_{0}\right)$.
V. A closed box has length ℓ, width w, and height h.
(5)
14. Give a formula for its surface area S in terms of ℓ, w, and h.
15. Use the Chain Rule to calculate the rate at which the surface area of the box is changing when $\ell=2, w=3$, $h=1, d \ell / d t=-1, d w / d t=0.5$, and $d h / d t=2$.
VI. Let $f(x, y)=x y^{2}$. Calculate a Riemann sum for f on the domain $0 \leq x \leq 2,0 \leq y \leq 4$, using the midpoint (4) rule to select the points where the function values are computed. Use $m=n=2$ (that is, the x-interval and y-interval are each partitioned into two subintervals of equal length).
VII. Calculate the double integral $\iint_{R} \frac{x}{1+y^{2}} d A$, where $R=\{(x, y) \mid 0 \leq x \leq 1,0 \leq y \leq 1\}$.
(4)
VIII. Let $f(x, y)=\frac{x^{2} y^{2}}{x^{2}+y^{2}}$. Verify that $f(0, y)=0$. For $x \neq 0$, make an estimate of $\frac{x^{2} y^{2}}{x^{2}+y^{2}}$ that makes it clear
(4) that $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2} y^{2}}{x^{2}+y^{2}}=0$.
IX. Verify that $\lim _{(x, y) \rightarrow(0,0)} \frac{x y}{x^{2}+y^{2}}$ does not exist.
X. The figure to the right shows the level curves of a func-
(4) tion $f(x, y)$. Draw the gradients at the points P and Q. Indicate which one is shorter, and tell why.

