I. Let $f(x, y) = x^2 y^3$. (8) 1. Calculate $\nabla f(x, y)$ and $\nabla f(-2, 1)$.

- 2. Find the largest directional derivative of f at the point (-2, 1), and the direction in which it occurs.
- 3. Find the directional derivative of f at the point (-2, 1), in the direction toward (-3, 3).
- 4. Write an equation for the tangent line to the level curve of f through the point (-2, 1).

- **II**. The figure to the right shows the graph of a function (6) f(x, y) with domain the points (x, y) with $-1 \le x \le 1$ and $-1 \le y \le 1$. Answer the following questions, based on the apparent behavior of f shown on the graph.
 - 1. At what points (x, y) is $f_x(x, y) < 0$?
 - 2. At what points (x, y) is $f_x(x, y) > 0$?
 - 3. At what points (x, y) is $f_y(x, y) < 0$?
 - 4. At what points (x, y) is $f_y(x, y) > 0$?
 - 5. At what points (x, y) is $f_{xx}(x, y) > 0$?
 - 6. At what points (x, y) is $f_{yy}(x, y) > 0$?

- (9)(9)
 - 1. $f_z(x, y, z)$ if $f(x, y, z) = e^{x^2 y \sin(z)}$

2. $\frac{\partial R}{\partial R_1}$ if $\frac{1}{R^3} = \frac{1}{R_1^2} + \frac{1}{R_2^2} + \frac{1}{R_3^2}$, using implicit differentiation.

3. $d(xy/z^2)$

IV. Calculate $(\vec{i} + f_x(x_0, y_0)\vec{k}) \times (\vec{j} + f_y(x_0, y_0)\vec{k})$. Tell how the resulting vector is related to the surface (4) z = f(x, y) at the point (x_0, y_0, z_0) .

- **V**. A closed box has length ℓ , width w, and height h.
- (5) 1. Give a formula for its surface area S in terms of ℓ , w, and h.

2. Use the Chain Rule to calculate the rate at which the surface area of the box is changing when $\ell = 2, w = 3, h = 1, d\ell/dt = -1, dw/dt = 0.5, and dh/dt = 2.$

VI. Let $f(x, y) = xy^2$. Calculate a Riemann sum for f on the domain $0 \le x \le 2, 0 \le y \le 4$, using the midpoint (4) rule to select the points where the function values are computed. Use m = n = 2 (that is, the *x*-interval and *y*-interval are each partitioned into two subintervals of equal length).

VII. Calculate the double integral $\iint_R \frac{x}{1+y^2} dA$, where $R = \{(x,y) \mid 0 \le x \le 1, 0 \le y \le 1\}$. (4) VIII. Let $f(x,y) = \frac{x^2y^2}{x^2 + y^2}$. Verify that f(0,y) = 0. For $x \neq 0$, make an estimate of $\frac{x^2y^2}{x^2 + y^2}$ that makes it clear that $\lim_{(x,y)\to(0,0)} \frac{x^2y^2}{x^2 + y^2} = 0$.

IX. Verify that
$$\lim_{(x,y)\to(0,0)} \frac{xy}{x^2+y^2}$$
 does not exist. (3)

Х. The figure to the right shows the level curves of a func-(4)tion f(x,y). Draw the gradients at the points P and Q. Indicate which one is shorter, and tell why.

