I. Sketch the region of integration and change the order of integration: $\int_{0}^{1} \int_{y^{2}}^{2-y} f(x, y) d x d y$
II. Give a geometric explanation of why $d A=r d r d \theta$ in polar coordinates.
(3)
III. Let T be the triangle in the first quadrant with sides $x=0, y=0$, and $x+2 y=1$. Assume that the
(6) density at (x, y) is proportional to the distance from (x, y) to the origin. Write an integral whose value is the moment of T with respect to the y-axis (if you do not know what function to integrate, just write it as $f(x, y)$). Supply limits for integrating first with respect to x and then with respect to y, but do not try to calculate the value of the integral.
IV. The figure to the right shows the graph of a func(3) tion $f(x, y)$ whose domain is the square $0 \leq x \leq 1$ and $0 \leq y \leq 1$. In the space below, draw an $x y$-coordinate system and sketch the gradient of $f(x, y)$.

V. Calculate $\iiint_{E} z d V$, where E lies between the spheres $\rho=1$ and $\rho=2$ and above the cone $\phi=\pi / 4$.
(7) You may need to use some of the formulas $x=\rho \cos (\theta) \sin (\phi), y=\rho \sin (\theta) \sin (\phi), z=\rho \cos (\phi), d V=$ $\rho^{2} \sin (\phi) d \rho d \theta d \phi$.
VI. The figure to the right shows the graph of a function (3) $\quad f(x, y)$ whose domain is the square $0 \leq x \leq 1$ and $0 \leq y \leq 1$. It also shows the vectors \vec{v}_{x} and \vec{v}_{y} which are tangent to the surface and lie above the "vectors" $d x \vec{\imath}$ and $d y \vec{\jmath}$. Given that $\vec{v}_{x}=d x \vec{\imath}+$ $f_{x} d x \vec{k}$ and $\vec{v}_{y}=d y \vec{\jmath}+f_{y} d y \vec{k}$, calculate $\vec{v}_{x} \times \vec{v}_{y}$.

VII. Let E be the solid ball $x^{2}+y^{2}+z^{2} \leq 1$. Supply limits for the integral $\iiint_{E} f(x, y, z) d z d y d x$. (4)
VIII. Calculate the surface area of the portion of the paraboloid $z=x^{2}+y^{2}$ that lies below the plane $z=3$. (7)
IX. Let C be the line segment $x=1-t^{2}, y=t^{2}, 0 \leq t \leq 1$.

1. Use $d s=\sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t$ to calculate $d s$. Then calculate $\int_{C} y^{2} d s$.
2. Calculate $\int_{C} y^{2} d x$.
3. Calculate $\int_{C} y^{2} \vec{\jmath} \cdot d \vec{r}$, where $\vec{r}(t)=\left(1-t^{2}\right) \vec{\imath}+t^{2} \vec{\jmath}$.
$\underset{\text { (6) }}{\mathbf{X} . \quad \text { Let } \vec{F}(x, y)=\frac{-y}{x^{2}+y^{2}} \vec{\imath}+\frac{x}{x^{2}+y^{2}} \vec{\jmath} .}$
4. Check that $\vec{F}(x, y)$ is perpendicular to the position vector of (x, y).
5. Draw the unit circle in an $x y$-plane, showing what the vectors $\vec{F}(x, y)$ look like at points on the circle.
6. If $\vec{F}(x, y)$ were the gradient of some function f, how would the values of f change as you travel counterclockwise around the unit circle? Why would this be impossible?
