I. Use Green's theorem to calculate $\int_{C}\left(e^{y} \vec{\imath}+x y \vec{\jmath}\right) \cdot d \vec{r}$, where C is the boundary of the unit square $0 \leq x \leq 1$, (5) $0 \leq y \leq 1$, with the clockwise orientation.
II. The vector field $\vec{F}(x, y, z)=(1+2 x z) \vec{\imath}+(1+\cos (z)) \vec{\jmath}+\left(x^{2}-y \sin (z)\right) \vec{k}$ is known to be conservative. Find (5) a function $f(x, y, z)$ so that $\nabla f=\vec{F}$.
III. The figure to the right shows a vector field
(6) $\vec{F}(x, y)=P(x, y) \vec{\imath}+Q(x, y) \vec{\jmath}$ in the $x y$-plane.

1. Determine whether each of $\frac{\partial P}{\partial x}, \frac{\partial P}{\partial y}, \frac{\partial Q}{\partial x}, \frac{\partial Q}{\partial y}$ is positive, negative, or 0 .

IV. Calculate each of the following.
(9)
2. $\operatorname{curl}(x z \vec{\imath}+x z \vec{\jmath}+x y \vec{k})$
3. $\operatorname{div}(\nabla f)$, where f is a function of (x, y, z)
4. $\int_{C} \nabla f \cdot d \vec{r}$, where $f(x, y)=\sin (\sin (x y))$ and C is the line segment in the $x y$-plane from $(0,0)$ to $(1, \pi / 3)$.
V. The figure to the right shows two vectors, \vec{a} and \vec{b}.
(6)
5. Give a general formula for the unit vector in the direction of \vec{a}.
6. Draw the vector projection of \vec{b} to \vec{a}.

7. Give a general formula for the scalar projection of \vec{b} to \vec{a}.
VI. Let T be the sphere of radius a centered at the origin. Recall that T can be parameterized by $x=$ (9) $a \cos (\theta) \sin (\phi), y=a \sin (\theta) \sin (\phi)$, and $z=a \cos (\phi)$.
8. What is the domain R for this parameterization? Draw it in the (θ, ϕ)-plane.
9. Calculate \vec{r}_{ϕ} and \vec{r}_{θ} for this parameterization.
10. Given that $\vec{r}_{\phi} \times \vec{r}_{\theta}=a \sin (\phi)(x \vec{\imath}+y \vec{\jmath}+z \vec{k})$, calculate $\left\|\vec{r}_{\phi} \times \vec{r}_{\theta}\right\|$.
11. Write a double integral of a function of (θ, ϕ) on R whose value equals $\iint_{T} x^{2} d S$, but do not try to calculate the value.
VII. Let S be the surface $z=f(x, y)$, where the domain of $f(x, y)$ is the unit square $0 \leq x \leq 1$ and $0 \leq y \leq 1$. (8) Parameterize S by $x=u, y=v$, and $z=f(u, v)$, where the domain of the parameterization is the unit square R given by $0 \leq u \leq 1$ and $0 \leq v \leq 1$ in the $u v$-plane.
12. Calculate \vec{r}_{u} and \vec{r}_{v}.
13. Calculate $\vec{r}_{u} \times \vec{r}_{v}$.
14. Calculate $\left\|\vec{r}_{u} \times \vec{r}_{v}\right\|$.
15. Express $d S$ in terms of $d R$.
VIII. Let C consist of the line segment from $(0,0)$ to $(1,2)$, followed by the line segment from $(1,2)$ to $(6,7)$, (5) followed by the line segment from $(6,7)$ to $(13,3)$, followed by the line segment from $(13,3)$ to $(1,0)$. Calculate $\int_{C} \cos (x) \vec{\imath} \cdot d \vec{r}$.
