Theory of Linear Ordinary Differential Equations

1. The general linear equation is

$$
P_{0}(x) y^{(n)}+P_{1}(x) y^{(n-1)}+\cdots P_{n-1}(x) y^{\prime}+P_{n}(x) y=F(x)
$$

The number n is called the order of the equation. At x-values where $P_{0}(x)=0$, the behavior is complicated. On any open interval I where $P_{0}(x)$ is never 0 , we can divide by $P_{0}(x)$ to obtain the general equation

$$
y^{(n)}+p_{1}(x) y^{(n-1)}+\cdots+p_{n-1}(x) y^{\prime}+p_{n}(x) y=f(x)
$$

This equation is called homogeneous if $f(x)=0$, otherwise it is called nonhomogeneous. From now on, we will assume that these functions $p_{1}(x), \ldots, p_{n}(x)$ and $f(x)$ are continuous on some open interval I.
2. For the homogeneous equation $y^{(n)}+p_{1}(x) y^{(n-1)}+\cdots+p_{n-1}(x) y^{\prime}+p_{n}(x) y=0$, we have the Principle of Superposition: if y_{1}, \ldots, y_{r} are solutions, then so is any linear combination $k_{1} y_{1}+\cdots+k_{r} y_{r}$.
3. Existence and Uniqueness: For any number a in the interval I, if $b_{0}, b_{1}, \ldots, b_{n-1}$ are any real numbers then the initial value problem

$$
y^{(n)}+p_{1}(x) y^{(n-1)}+\cdots+p_{n-1}(x) y^{\prime}+p_{n}(x) y=f(x) ; \quad y(a)=b_{0}, y^{\prime}(a)=b_{1}, \ldots, y^{(n-1)}(a)=b_{n-1}
$$

has a unique solution which is defined on all of I.
4. A collection of functions f_{1}, \ldots, f_{r} on the interval I is called linearly dependent if there are constants k_{1}, \ldots, k_{r}, at least one of which is not 0 , so that $k_{1} f_{1}+\cdots+k_{r} f_{r}=0$ (for all x in I). This happens exactly when you can express one of the f_{i} as a linear combination of the others. For example, if $k_{1} \neq 0$, then you can solve for f_{1} to obtain $f_{1}=-\frac{k_{2}}{k_{1}} f_{2}-\frac{k_{3}}{k_{1}} f_{3}-\cdots-\frac{k_{r}}{k_{1}} f_{r}$. If the set of functions is not linearly dependent, it is called linearly independent.
5. The Wronskian of the collection f_{1}, \ldots, f_{n} is the function which is the determinant

$$
W\left(f_{1}, \ldots, f_{n}\right)=\operatorname{det}\left(\begin{array}{ccccc}
f_{1} & f_{2} & f_{3} & \ldots & f_{n} \\
f_{1}^{\prime} & f_{2}^{\prime} & f_{3}^{\prime} & \ldots & f_{n}^{\prime} \\
f_{1}^{\prime \prime} & f_{2}^{\prime \prime} & f_{3}^{\prime \prime} & \ldots & f_{n}^{\prime \prime} \\
\vdots & \vdots & \vdots & & \vdots \\
f_{1}^{(n-1)} & f_{2}^{(n-1)} & f_{3}^{(n-1)} & \ldots & f_{n}^{(n-1)}
\end{array}\right)
$$

If $f_{1}, \ldots f_{n}$ are linearly dependent on I then $W\left(f_{1}, \ldots, f_{n}\right)$ is the zero function.
If $f_{1}, \ldots f_{n}$ are linearly independent solutions of the homogeneous linear equation

$$
y^{(n)}+p_{1}(x) y^{(n-1)}+\cdots+p_{n-1}(x) y^{\prime}+p_{n}(x) y=0
$$

on I, then $W\left(f_{1}, \ldots, f_{n}\right)(x)$ is not zero for any x in I.
6. General Solution for a Homogeneous Linear Equation: If y_{1}, \ldots, y_{n} are linearly independent solutions of the homogeneous equation $y^{(n)}+p_{1}(x) y^{(n-1)}+\cdots+p_{n-1}(x) y^{\prime}+p_{n}(x) y=0$, then every solution is a linear combination $y_{c}=c_{1} y_{1}+\cdots+c_{n} y_{n}$.
7. General Solution for a Nonhomogeneous Linear Equation: If y_{p} is a particular solution of the nonhomogeneous equation $y^{(n)}+p_{1}(x) y^{(n-1)}+\cdots+p_{n-1}(x) y^{\prime}+p_{n}(x) y=f(x)$, then every solution is a linear combination $y_{p}+y_{c}$ where y_{c} is some solution of the associated homogeneous equation $y^{(n)}+p_{1}(x) y^{(n-1)}+$ $\cdots+p_{n-1}(x) y^{\prime}+p_{n}(x) y=0$.

