1. The general linear equation is

$$P_0(x)y^{(n)} + P_1(x)y^{(n-1)} + \dots + P_{n-1}(x)y' + P_n(x)y = F(x)$$

The number n is called the *order* of the equation. At x-values where $P_0(x) = 0$, the behavior is complicated. On any open interval I where $P_0(x)$ is never 0, we can divide by $P_0(x)$ to obtain the general equation

$$y^{(n)} + p_1(x)y^{(n-1)} + \dots + p_{n-1}(x)y' + p_n(x)y = f(x)$$
.

This equation is called **homogeneous** if f(x) = 0, otherwise it is called **nonhomogeneous**. From now on, we will assume that these functions $p_1(x), \ldots, p_n(x)$ and f(x) are continuous on some open interval I.

- 2. For the homogeneous equation $y^{(n)} + p_1(x)y^{(n-1)} + \cdots + p_{n-1}(x)y' + p_n(x)y = 0$, we have the **Principle of Superposition**: if y_1, \ldots, y_r are solutions, then so is any linear combination $k_1y_1 + \cdots + k_ry_r$.
- 3. Existence and Uniqueness: For any number a in the interval I, if $b_0, b_1, \ldots, b_{n-1}$ are any real numbers then the *initial value problem*

$$y^{(n)} + p_1(x)y^{(n-1)} + \dots + p_{n-1}(x)y' + p_n(x)y = f(x); \quad y(a) = b_0, y'(a) = b_1, \dots, y^{(n-1)}(a) = b_{n-1}(a)$$

has a *unique* solution which is *defined* on all of I.

- 4. A collection of functions f_1, \ldots, f_r on the interval I is called **linearly dependent** if there are constants k_1, \ldots, k_r , at least one of which is not 0, so that $k_1f_1 + \cdots + k_rf_r = 0$ (for all x in I). This happens exactly when you can express one of the f_i as a linear combination of the others. For example, if $k_1 \neq 0$, then you can solve for f_1 to obtain $f_1 = -\frac{k_2}{k_1}f_2 \frac{k_3}{k_1}f_3 \cdots \frac{k_r}{k_1}f_r$. If the set of functions is not linearly dependent, it is called **linearly independent**.
- 5. The Wronskian of the collection f_1, \ldots, f_n is the function which is the determinant

$$W(f_1, \dots, f_n) = \det \begin{pmatrix} f_1 & f_2 & f_3 & \dots & f_n \\ f'_1 & f'_2 & f'_3 & \dots & f'_n \\ f''_1 & f''_2 & f''_3 & \dots & f''_n \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ f_1^{(n-1)} & f_2^{(n-1)} & f_3^{(n-1)} & \dots & f_n^{(n-1)} \end{pmatrix} .$$

If f_1, \ldots, f_n are linearly dependent on I then $W(f_1, \ldots, f_n)$ is the zero function.

If f_1, \ldots, f_n are linearly independent *solutions* of the homogeneous linear equation

$$y^{(n)} + p_1(x)y^{(n-1)} + \dots + p_{n-1}(x)y' + p_n(x)y = 0$$

on I, then $W(f_1, \ldots, f_n)(x)$ is not zero for any x in I.

- 6. General Solution for a Homogeneous Linear Equation: If y_1, \ldots, y_n are linearly independent solutions of the homogeneous equation $y^{(n)} + p_1(x)y^{(n-1)} + \cdots + p_{n-1}(x)y' + p_n(x)y = 0$, then every solution is a linear combination $y_c = c_1y_1 + \cdots + c_ny_n$.
- 7. General Solution for a Nonhomogeneous Linear Equation: If y_p is a particular solution of the *nonhomogeneous* equation $y^{(n)} + p_1(x)y^{(n-1)} + \cdots + p_{n-1}(x)y' + p_n(x)y = f(x)$, then every solution is a linear combination $y_p + y_c$ where y_c is some solution of the associated homogeneous equation $y^{(n)} + p_1(x)y^{(n-1)} + \cdots + p_{n-1}(x)y' + p_n(x)y = 0$.