Theory of Second-Order Linear Ordinary Differential Equations

1. A second-order linear equation is a differential equation of the form

$$
P_{0}(x) y^{\prime \prime}+P_{1}(x) y^{\prime}+P_{2}(x) y=F(x)
$$

(where $P_{0}(X), P_{1}(x), P_{2}(x)$, and $F(x)$ are continuous). At x-values where $P_{0}(x)=0$, the behavior is complicated. On any open interval I where $P_{0}(x)$ is never 0 , we can divide by $P_{0}(x)$ to obtain the general equation

$$
y^{\prime \prime}+p_{1}(x) y^{\prime}+p_{2}(x) y=f(x) .
$$

This equation is called homogeneous if $f(x)=0$, otherwise it is called nonhomogeneous. From now on, we will assume that these functions $p_{1}(x), p_{2}(x)$ and $f(x)$ are continuous on some open interval I.
2. For the homogeneous equation $y^{\prime \prime}+p_{1}(x) y^{\prime}+p_{2}(x) y=0$, we have the Principle of Superposition: if y_{1}, \ldots, y_{r} are solutions, then so is any linear combination $k_{1} y_{1}+\cdots+k_{r} y_{r}$.
3. Existence and Uniqueness: For any number a in the interval I, if b_{0} and b_{1} are any real numbers then the initial value problem

$$
y^{\prime \prime}+p_{1}(x) y^{\prime}+p_{2}(x) y=f(x) ; \quad y(a)=b_{0}, y^{\prime}(a)=b_{1}
$$

has a unique solution which is defined on all of I.
4. A pair of functions f_{1} and f_{2} on the interval I is called linearly dependent if there are constants k_{1} and k_{2}, at least one of which is not 0 , so that $k_{1} f_{1}+k_{2} f_{2}=0$ (for all x in I). This happens exactly when you can express f_{1} or f_{2} as a constant multiple of the other one. For example, if $k_{1} \neq 0$, then you can solve for f_{1} to obtain $f_{1}=-\frac{k_{2}}{k_{1}} f_{2}$. If the pair of functions is not linearly dependent, it is called linearly independent.
5. The Wronskian of the pair f_{1}, f_{2} is the function which is the determinant

$$
W\left(f_{1}, f_{2}\right)=\operatorname{det}\left(\begin{array}{cc}
f_{1} & f_{2} \\
f_{1}^{\prime} & f_{2}^{\prime}
\end{array}\right)
$$

If f_{1}, f_{2} are linearly dependent on I then $W\left(f_{1}, f_{2}\right)$ is the zero function.
If f_{1}, f_{2} are linearly independent solutions of the homogeneous linear equation

$$
y^{\prime \prime}+p_{1}(x) y^{\prime}+p_{2}(x) y=0
$$

on I, then $W\left(f_{1}, f_{2}\right)(x)$ is not zero for any x in I.
6. General Solution for a Second-Order Homogeneous Linear Equation: If y_{1} and y_{2} are linearly independent solutions of the homogeneous equation $y^{\prime \prime}+p_{1}(x) y^{\prime}+p_{2}(x) y=0$, then every solution is a linear combination $y_{c}=c_{1} y_{1}+c_{2} y_{2}$.
7. General Solution for a Second-Order Nonhomogeneous Linear Equation: If y_{p} is a particular solution of the nonhomogeneous equation $y^{\prime \prime}+p_{1}(x) y^{\prime}+p_{2}(x) y=f(x)$, then every solution is a linear combination $y_{p}+y_{c}$ where y_{c} is some solution of the associated homogeneous equation $y^{\prime \prime}+p_{1}(x) y^{\prime}+p_{2}(x) y=0$.

