- I. Write $2\cos(3t) + \sin(3t)$ in phase-angle form, leaving an expression involving the inverse tangent function
- (5) \tan^{-1} in the answer (i. e. do not perform a numerical approximation).

II. Use the method of variation of parameters to find a particular solution of the differential equation y'' + y' = x(10) as follows.

1. Given that $y_1 = 1$ and $y_2 = e^{-x}$ are two linearly independent solutions of the associated homogeneous equation y'' + y' = 0, write the general equations $y_1u'_1 + y_2u'_2 = 0$, $y'_1u'_1 + y'_2u'_2 = f(x)$ of the method of variation of parameters to find u'_1 and u'_2 for the nonhomogeneous linear equation y'' + y' = x.

2. Solve for u'_1 and find u_1 .

3. Solve for u'_2 . Use the integration formula $\int xe^x dx = (x-1)e^x$ to find u_2 .

4. Write the particular solution y_p that has been found.

- Using the formula $x^s((A_0 + A_1x + \dots + A_mx^m)e^{rx}\cos(kx) + (B_0 + B_1x + \dots + B_mx^m)e^{rx}\sin(kx))$, write III.
- (8)trial solutions for the method of undetermined coefficients for the following differential equations, but do not substitute them into the equations or proceed further with finding the solution.

1. $y'' + y' = e^x \sin(2x)$

2. $y'' + y' = x^2 e^{-x}$

Transform the differential equation $t^3x^{(3)} - 2t^2x'' + 3tx' + 5x = \ln(t)$ into an equivalent system of first-order IV.differential equations. (5)

Given that $r^{12} + 3r^{11} + 6r^{10} + 9r^9 + 10r^8 + 9r^7 + 6r^6 + 3r^5 + r^4 = r^4(r+1)(r^2 + r + 1)(r^2 + 1)^2(r+1)$, write the general solution to $y^{(12)} + 3y^{(11)} + 6y^{(10)} + 9y^{(9)} + 10y^{(8)} + 9y^{(7)} + 6y^{(6)} + 3y^{(5)} + y^{(4)} = 0$. V.

(8)

(4)

- **VI**. Consider the boundary-value problem $y'' + \lambda y = 0$, $y(a) = a_0$, $y(b) = b_0$.
 - 1. Define what it means to say that a value of λ is an eigenvalue of this problem.

2. Define what it means to say that a function y is an eigenfunction associated to an eigenvalue λ .

VII. Use the method of elimination to solve the linear system. Use differential operators, if you prefer, or else (6) just solve the second equation for x and use that expression in the first equation.

$$\begin{aligned} x' &= x - 2y, \\ y' &= 2x - 3y \end{aligned}$$

- **VIII.** Consider the boundary-value problem $y'' + \lambda y = 0$, y(0) = 0, $y(\pi) = 0$.
- (10) 1. Show that $\lambda = 0$ is not an eigenvalue of this problem.

2. By writing $\lambda = \alpha^2$, $\alpha > 0$, find all positive eigenvalues, and an associated eigenfunction for each positive eigenvalue.

IX. (Bonus problem) Simplify $(\frac{1}{\sqrt{2}} + \frac{i}{\sqrt{2}})^{100}$. (4)