Math 6833 homework problems

- 1. Draw all the compact connected orientable surfaces with $\chi = -3$ and with $\chi = -4$, in various ways.
- 2. Draw all pair-of-pants decompositions of the closed connected orientable surface of genus 3. Prove that they really are different. If you can, prove that you really have found all of them.
- 3. Prove that any circle imbedded in a pair of pants must either bound a disk or be parallel to a boundary circle. Hint: Cut along C. Use an Euler characteristic argument to show that S_C cannot be connected. Use Euler characteristic and the Classifiation Theorem to show that one of the components is either a disk or an annulus.
- 4. Let X be a boundary component of a manifold M (for convenience, assume that M is compact, although this hypothesis is not actually needed). Let $F: M \to N$ be a homeomorphism, so that F(X) is a boundary component Y of N. Let $f_0 = F|_X: X \to Y$, and let $f_1: X \to Y$ be a homeomorphism which is isotopic to f_0 , by an isotopy f_t . Prove that there is an isotopy F_t from $F = F_0$ to F_1 such that $F_t|_X = f_t$ for all t. In particular, $F_1|_X = f_1$. Prove that if U is any open neighborhood of X, then the isotopy may be selected so that each $F_t = F_0$ on M U. (Assume the Collaring Theorem: There is an imbedding $j: X \times I \to M$ such that j(x, 0) = x for all $x \in X$. Construct the isotopy of F so that $F_t = F_0$ on $M j(X \times I)$.)
- 5. For homeomorphisms $f, g: X \to X$, write $f \sim g$ if f is isotopic to g.
 - 1. Prove that \sim is an equivalence relation.
 - 2. Prove that if $f \sim g$, and h is any homeomorphism from X to X, then $fh \sim gh$ and $hf \sim hg$.
 - 3. Let J(X) be the space of homeomorphisms that are isotopic to the identity map 1_X . Prove that J(X) is a normal subgroup of the group Homeo(X) of all homeomorphisms of X. Hint: This is easy using parts 1 and 2.
- 6. A connected orientable surface is called *planar* if it can be imbedded in the plane \mathbb{R}^2 . Show that F(g, k) is planar if and only if g = 0 and k > 0.
- 7. Find out (e. g. ask someone, go to the library and find a book, search Math. Reviews using MathSciNet) the definition of a Fréchet space, and find out the really important difference between Banach spaces and Fréchet spaces.