Math 6833 homework problems

8. For the annulus A, show that $\mathcal{H}(A) \cong C_{2} \times C_{2}$. (Ingredients: the homomorphism $\mathcal{H}(A) \rightarrow \operatorname{Out}\left(\pi_{1}(A)\right)$, the homomorphism $\mathcal{H}(A) \rightarrow C_{2}$ defined by the way a homeomorphism permutes the components of ∂A, and the fact that every element of $\mathcal{H}(A$ rel $\partial A)$ can be represented by one of the h_{n}.)
9. Let $j: S^{1} \rightarrow S^{1} \times S^{1}$ be an imbedding. Let $C=S^{1} \times\{1\} \subset S^{1} \times S^{1}$, and suppose that j is homotopic to an imbedding that carries S^{1} to C.
10. An imbedding of a manifold X into a manifold Y is called proper if the preimage of ∂Y equals ∂X. Suppose that β is a properly-imbedded arc in $S^{1} \times I$, whose endpoints lie in $S^{1} \times\{0\}$, so that β cuts $S^{1} \times\{0\}$ into two arcs, β_{1} and β_{2}. Prove that for either $i=1$ or $i=2, \beta$ and β_{i} bound a disk in $S^{1} \times I$. Note: if S_{β} is the result of cutting a surface S along a properly-imbedded arc β, then $\chi\left(S_{\beta}\right)=\chi(S)+1$ (why?).
11. Suppose that $\alpha: S^{1} \rightarrow S^{1} \times I$ is an imbedding whose image is disjoint from $S^{1} \times \partial I$. Show that $\alpha\left(S^{1}\right)$ is either contractible, or is parallel to both $S^{1} \times\{0\}$ and $S^{1} \times\{1\}$.
12. Let $p: S^{1} \times \mathbb{R} \rightarrow S^{1} \times S^{1}$ be $p(x, r)=(x, r)$, where each S_{\sim}^{1} is regarded as \mathbb{R} / \mathbb{Z}. Explain why there is a lift $\widetilde{j}: S^{1} \rightarrow S^{1} \times \mathbb{R}$ such that $j=p \widetilde{j}$.
13. Using an argument similar to the one used in the proof that $\mathcal{H}(A \operatorname{rel} \partial A) \cong \mathbb{Z}$, show that j is isotopic to an imbedding that carries S^{1} to C.
14. Check that if $j_{0}: S^{1} \times I \rightarrow S$ and $j_{1}: S^{1} \times I \rightarrow S$ are isotopic imbeddings, then the Dehn twists T_{0} and T_{1} that they define are isotopic. You may assume a version of the Isotopy Extension Theorem that tells you that if j_{t} is an isotopy of imbeddings from j_{0} to j_{1}, then there is an isotopy of diffeomorphisms $J_{t}: S \rightarrow S$ such that J_{0} is the identity map and $J_{t} \circ j_{0}=j_{t}$ for all t. Then define T_{t} using J_{t} and T_{0}.
15. Let C be a contractible loop in S. Prove that t_{C} is isotopic to the identity. Hint: C bounds a disk. We may use any imbedding of $S^{1} \times I$ to define t_{C}, choose a nice one.
16. Let $f: S \rightarrow S$ be an orientation-reversing diffeomorphism, and let C be a loop in S. Draw convincing pictures showing that $f t_{C} f^{-1}=t_{f(C)}^{-1}$.
17. For each $k=0,1,2,3$, find a pair of 4 -simplices of $C(F(3,0))$ whose intersection is a k-simplex.
