Math 6833 homework problems

- 8. For the annulus A, show that $\mathcal{H}(A) \cong C_2 \times C_2$. (Ingredients: the homomorphism $\mathcal{H}(A) \to \operatorname{Out}(\pi_1(A))$), the homomorphism $\mathcal{H}(A) \to C_2$ defined by the way a homeomorphism permutes the components of ∂A , and the fact that every element of $\mathcal{H}(A \operatorname{rel} \partial A)$ can be represented by one of the h_n .)
- 9. Let $j: S^1 \to S^1 \times S^1$ be an imbedding. Let $C = S^1 \times \{1\} \subset S^1 \times S^1$, and suppose that j is homotopic to an imbedding that carries S^1 to C.
 - 1. An imbedding of a manifold X into a manifold Y is called *proper* if the preimage of ∂Y equals ∂X . Suppose that β is a properly-imbedded arc in $S^1 \times I$, whose endpoints lie in $S^1 \times \{0\}$, so that β cuts $S^1 \times \{0\}$ into two arcs, β_1 and β_2 . Prove that for either i = 1 or i = 2, β and β_i bound a disk in $S^1 \times I$. Note: if S_β is the result of cutting a surface S along a properly-imbedded arc β , then $\chi(S_\beta) = \chi(S) + 1$ (why?).
 - 2. Suppose that $\alpha: S^1 \to S^1 \times I$ is an imbedding whose image is disjoint from $S^1 \times \partial I$. Show that $\alpha(S^1)$ is either contractible, or is parallel to both $S^1 \times \{0\}$ and $S^1 \times \{1\}$.
 - 3. Let $p: S^1 \times \mathbb{R} \to S^1 \times S^1$ be p(x,r) = (x,r), where each S^1 is regarded as \mathbb{R}/\mathbb{Z} . Explain why there is a lift $\tilde{j}: S^1 \to S^1 \times \mathbb{R}$ such that $j = p\tilde{j}$.
 - 4. Using an argument similar to the one used in the proof that $\mathcal{H}(A \operatorname{rel} \partial A) \cong \mathbb{Z}$, show that j is isotopic to an imbedding that carries S^1 to C.
- 10. Check that if $j_0: S^1 \times I \to S$ and $j_1: S^1 \times I \to S$ are isotopic imbeddings, then the Dehn twists T_0 and T_1 that they define are isotopic. You may assume a version of the Isotopy Extension Theorem that tells you that if j_t is an isotopy of imbeddings from j_0 to j_1 , then there is an isotopy of diffeomorphisms $J_t: S \to S$ such that J_0 is the identity map and $J_t \circ j_0 = j_t$ for all t. Then define T_t using J_t and T_0 .
- 11. Let C be a contractible loop in S. Prove that t_C is isotopic to the identity. Hint: C bounds a disk. We may use any imbedding of $S^1 \times I$ to define t_C , choose a nice one.
- 12. Let $f: S \to S$ be an orientation-reversing diffeomorphism, and let C be a loop in S. Draw convincing pictures showing that $ft_C f^{-1} = t_{f(C)}^{-1}$.
- 13. For each k = 0, 1, 2, 3, find a pair of 4-simplices of C(F(3, 0)) whose intersection is a k-simplex.