Math 6833 homework problems

- 14. Suppose that a group G acts on a set X. Recall that if $x \in X$, then the *stabilizer* of x is $G_x = \{g \in G \mid gx = x\}.$
 - 1. Show that if $x, y \in X$ and x and y lie in the same orbit, then G_x and G_y are conjugate subgroups of X.
 - 2. Give an example for which the converse is false (find an example that is an effective action, that is, an action where the only element of G that acts as the identity on X is the identity element of G).
- 15. Let T be the torus and X = C(T) with the action of $\mathcal{H}(T) \cong \mathrm{GL}(2,\mathbb{Z})$. Find the stabilizer of the point [M]. Describe its group structure.
- 16. Consider the isometry $\gamma = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}$ of the upper half-plane \mathbb{H}^2 .
 - 1. Calculate the two fixed points of γ on \mathbb{R} . They are the endpoints of the axis (i. e. the invariant geodesic) of γ . Calculate the point p where this axis meets the y-axis. Calculate $\gamma(p)$.
 - 2. Describe geometrically the action of γ on \mathbb{H}^2 , and draw a fundamental domain \mathcal{F} for the action.
 - 3. Parameterize the portion of the axis of γ between $\gamma(p)$ and p, and use the hyperbolic metric to carry out a direct calculation that its length is $\ln\left(\frac{7+3\sqrt{5}}{2}\right)$. Notice that this is the length of the unique closed geodesic in the annulus \mathbb{H}/γ .

17. Consider the isometry $\gamma = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}$ of the upper half-plane \mathbb{H}^2 . The trace of γ is 3, so its characteristic polynomial is $\lambda^2 - 3\lambda + 1$. The roots $\frac{3 \pm \sqrt{5}}{2}$ of the characteristic polynomial are the eigenvalues of γ , so γ is conjugate in $\mathrm{SL}(2, \mathbb{R})$ to the isometry $\gamma_1 = \begin{pmatrix} \frac{3 + \sqrt{5}}{2} & 0 \\ 0 & \frac{3 - \sqrt{5}}{2} \end{pmatrix}$. Consequently, the annulus \mathbb{H}^2/γ is isometric to the annulus

 \mathbb{H}^2/γ_1 . Find the axis of γ_1 and a fundamental domain for the action of γ_1 . Use a fact from class to see quickly that the length of the unique closed geodesic in \mathbb{H}^2/γ_1 is $\ln\left(\frac{7+3\sqrt{5}}{2}\right)$.

18. For an ideal quadrilateral in the hyperbolic plane, let d_1 and d_2 be the minimum distances between the opposite pairs of sides, chosen so that $d_1 \ge d_2$. Prove that the isometry classes of ideal quadrilaterals correspond to the interval $[1, \infty)$, with the

correspondence given by sending the isometry class to the ratio d_1/d_2 . Hint: