Math 6833 homework problems

19. Let $\pi: E \rightarrow B$ be a continuous map. A local cross-section at b is a map $s: U \rightarrow E$, where U is an open neighborhood of b, such that $\pi \circ s$ is the identity on U, and one says that π has local cross sections if it has a local cross section at each point of B. Let $\pi: \mathcal{T}_{S} \rightarrow \mathbb{R}_{>0}^{m}$ send h to $\left(L_{\alpha_{1}}(h), \ldots, L_{\alpha_{m}}(h)\right)$ as discussed in class. Prove that π has local cross-sections. Remark: the local product structure $h: U \times \mathbb{R}^{m} \rightarrow \pi^{-1}(U)$ of \mathcal{T}_{S} is then defined by $h(u, y)=y \cdot s(u)$.
20. Let $A=\left(\begin{array}{ll}2 & 1 \\ 1 & 1\end{array}\right)$, a linear transformation of the plane \mathbb{R}^{2}. Find its eigenvalues λ and $1 / \lambda$, where $\lambda>1$, and find a pair of eigenvectors $\left\{v_{1}, v_{2}\right\}$, for which v_{1} has eigenvalue λ and v_{2} has eigenvalue $1 / \lambda$. Let e_{1}, e_{2} be the standard basis, and graph the integer lattice $\mathbb{Z} e_{1} \times \mathbb{Z} e_{2}$ in the v_{1}, v_{2} basis.
21. Let f be the linear transformation of \mathbb{R}^{2} which is multiplication by the matrix A in the previous problem, let μ_{s} and μ_{u} be the measures associated to the stable and unstable foliations associated to A. Explain how the push-forward $f \mu_{u}$ equals $(1 / \lambda) \mu_{u}$.
22. Recall that diff (S) is the connected component of the identity in $\operatorname{Diff}(S)$. Observe that if $g \in \operatorname{Diff}_{+}(S)$ and h is a Riemannian metric on S, then the push forward $g h$ equals h if and only if g is an isometry of h.
23. Our first definition of \mathcal{T}_{S} was the equivalence classes of hyperbolic metrics on S, where $h_{1} \sim h_{2}$ when there exists $j \in \operatorname{diff}(S)$ such that $j h_{1}=h_{2}$. For this definition, the action of $\mathcal{H}_{+}(S)$ on \mathcal{T}_{S} is $\langle g\rangle[h]=[g h]$. Using this definition, prove that $\langle g\rangle[h]=[h]$ if and only if g is isotopic to an isometry of S when S has the metric h.
24. Our second definition of \mathcal{T}_{S} was the equivalence classes of marked hyperbolic structures on S, that is, pairs $\left(S_{1}, g_{1}\right)$ with S_{1} a surface with a hyperbolic metric h_{1} and $g_{1}: S_{1} \rightarrow S$ is a diffeomorphism, with $\left(S_{1}, g_{1}\right) \sim\left(S_{2}, g_{2}\right)$ when $g_{2}^{-1} g_{1}$ is isotopic to an isometry. For this definition, the action of $\mathcal{H}_{+}(S)$ on \mathcal{T}_{S} is $\langle g\rangle\left[\left(S_{1}, g_{1}\right)\right]=$ $\left[\left(S_{1}, g g_{1}\right)\right]$. Using this definition, prove that $\langle g\rangle\left[\left(S_{1}, g_{1}\right)\right]=\left[\left(S_{1}, g_{1}\right)\right]$ if and only if g is isotopic to an isometry of S, where S has the push-forward metric $g_{1} h_{1}$.
