Math 1823 homework

Instructions: Work the assigned problems. Book problems shown in **boldface** should be written up formally and turned in no later than the due date.

- 1. (due 8/31) Section 1.3 # 1, 2, 3, 6, 7, 9, 10, 11-16, 17-21, 22-24, 28, 37-40, 45-50, 52-55, 57-59, 61-64
- 2. (due 9/7) Let $f(x) = x^3$. Calculate the slopes of the tangent lines to the graph of $y = x^3$ as follows.
 - (a) Let m_{sec} be the function of h that is the slope of the secant line between (x_0, x_0^3) and $(x_0 + h, (x_0 + h)^3)$. Calculate m_{sec} , obtaining the expression

$$m_{sec} = (3x_0^2 + 3hx_0 + h^2)\frac{h}{h} \,.$$

- (b) In the *h-y* plane (horizontal coordinate *h* and vertical coordinate *y*), carefully graph the equation $y = m_{sec}$ (completing the square to obtain $h^2 + 3x_0h + 3x_0^2 = (h + \frac{3x_0}{2})^2 + \frac{3x_0^2}{4}$ might be a useful preliminary step). The graph will be a parabola, except that the point where the parabola meets the *y*-axis is missing.
- (c) If your graph is correct, the y-coordinate of the missing point is $3x_0^2$. Explain, as clearly as you can, why that number is the slope of the tangent line to $y = x^3$ at the point (x_0, x_0^3) . Clarity can be enhanced by using pictures of secant lines for some different values of h.
- 3. (due 9/7) Let $f(x) = x^3$. Calculate the slopes of the tangent lines to the graph of $y = x^3$ as follows.
 - (a) Let m_{sec} be the function of x that is the slope of the secant line between (x_0, x_0^3) and (x, x^3) . Calculate m_{sec} , obtaining the expression

$$m_{sec} = \left(x^2 + xx_0 + x_0^2\right) \frac{x - x_0}{x - x_0}$$

- (b) In the x-y plane, carefully graph the equation $y = m_{sec}$ (completing the square to obtain $x^2 + xx_0 + x_0^2 = (x + \frac{x_0}{2})^2 + \frac{3x_0^2}{4}$ might be a useful preliminary step). The graph will be a parabola, except that the point where the parabola meets the line $x = x_0$ is missing.
- (c) If your graph is correct, the y-coordinate of the missing point is $3x_0^2$. Make sure you can explain clearly why that number is the slope of the tangent line to $y = x^3$ at the point (x_0, x_0^3) .
- 4. 2.2 # 1-10.
- 5. (due 9/7) 2.3 # 17, **19**, **20**, 21, **22**, **24**, **26**, **28**, 35, 36, **37**, **38**, **55-57**.
- 6. (due 9/14) 2.4 # 3-6, 13, 15, 16, 20, 22-25, 26, 32, 38, 39.