Math 1823 homework

Instructions: Work the assigned problems. Book problems shown in boldface should be written up formally and turned in no later than the due date.

1. (due 8/31) Section $1.3 \# 1,2,3, \mathbf{6}, \mathbf{7}, 9,10, \mathbf{1 1 - 1 6}, 17-21, \mathbf{2 2 - 2 4}, \mathbf{2 8}, 37-40,45-50$, 52-55, 57-59, 61-64
2. (due $9 / 7$) Let $f(x)=x^{3}$. Calculate the slopes of the tangent lines to the graph of $y=x^{3}$ as follows.
(a) Let $m_{s e c}$ be the function of h that is the slope of the secant line between $\left(x_{0}, x_{0}^{3}\right)$ and $\left(x_{0}+h,\left(x_{0}+h\right)^{3}\right)$. Calculate $m_{s e c}$, obtaining the expresssion

$$
m_{s e c}=\left(3 x_{0}^{2}+3 h x_{0}+h^{2}\right) \frac{h}{h}
$$

(b) In the $h-y$ plane (horizontal coordinate h and vertical coordinate y), carefully graph the equation $y=m_{\text {sec }}$ (completing the square to obtain $h^{2}+3 x_{0} h+3 x_{0}^{2}=$ $\left(h+\frac{3 x_{0}}{2}\right)^{2}+\frac{3 x_{0}^{2}}{4}$ might be a useful preliminary step). The graph will be a parabola, except that the point where the parabola meets the y-axis is missing.
(c) If your graph is correct, the y-coordinate of the missing point is $3 x_{0}^{2}$. Explain, as clearly as you can, why that number is the slope of the tangent line to $y=x^{3}$ at the point $\left(x_{0}, x_{0}^{3}\right)$. Clarity can be enhanced by using pictures of secant lines for some different values of h.
3. (due $9 / 7$) Let $f(x)=x^{3}$. Calculate the slopes of the tangent lines to the graph of $y=x^{3}$ as follows.
(a) Let $m_{s e c}$ be the function of x that is the slope of the secant line between $\left(x_{0}, x_{0}^{3}\right)$ and $\left(x, x^{3}\right)$. Calculate $m_{\text {sec }}$, obtaining the expresssion

$$
m_{s e c}=\left(x^{2}+x x_{0}+x_{0}^{2}\right) \frac{x-x_{0}}{x-x_{0}} .
$$

(b) In the $x-y$ plane, carefully graph the equation $y=m_{\text {sec }}$ (completing the square to obtain $x^{2}+x x_{0}+x_{0}^{2}=\left(x+\frac{x_{0}}{2}\right)^{2}+\frac{3 x_{0}^{2}}{4}$ might be a useful preliminary step). The graph will be a parabola, except that the point where the parabola meets the line $x=x_{0}$ is missing.
(c) If your graph is correct, the y-coordinate of the missing point is $3 x_{0}^{2}$. Make sure you can explain clearly why that number is the slope of the tangent line to $y=x^{3}$ at the point $\left(x_{0}, x_{0}^{3}\right)$.
4. $2.2 \#-1-10$.
5. (due 9/7) 2.3 \# 17, 19, 20, 21, 22, 24, 26, 28, 35, 36, 37, 38, 55-57.
6. (due 9/14) $2.4 \# 3-6, \mathbf{1 3}, 15, \mathbf{1 6}, \mathbf{2 0}, 22-25, \mathbf{2 6}, \mathbf{3 2}, \mathbf{3 8}, \mathbf{3 9}$.

