Math 1823 homework

Instructions: Work the assigned problems. Book problems shown in boldface should be written up formally and turned in no later than the due date.
7. (due 9/21) $2.5 \# 1,43,44,59,61$
8. $(9 / 21) 2.6 \# \mathbf{8}, \mathbf{1 0}, \mathbf{1 6}$
9. $(9 / 21)$ Determine the rate of change of the cosine function by drawing a careful diagram of the points $(\cos (a), \sin (a))$ and $(\cos (x), \sin (x))$ and nearby distances and angles, then using the diagram to argue that for x near $a, \cos (x)-\cos (a)$ is very near $-\sin (a)(x-a)$, and then obtaining $\lim _{x \rightarrow a} \frac{\cos (x)-\cos (a)}{x-a}$ from this observation.
10. $(9 / 21)$ Think of the function $f(x)=x^{3}$ as being the volume of a cube of side x. Draw a cube of side a, and explain (with pictures, of course) the volume that is added on when the side is increased to $a+h$ (there are seven parts added on, three of volume $a^{2} h$, three of volumes $a h^{2}$, and one of volume h^{3}). Use this viewpoint to show that the rate of change of f at a is $3 a^{2}$. Give an exact expression for the error of linear approximation at a, that is, the function we call $\epsilon(h)$.
11. $(9 / 21)$ Recall that the rate of change of a function $f(x)$ at the x-value a is the unique number m for which $f(a+h)=f(a)+m h+\epsilon(h)$ with $\lim _{h \rightarrow 0} \frac{\epsilon(h)}{h}=0$ (if such a number m exists). Use this fact to find the rate of change of the function $\frac{1}{x}$ at a number a as follows.

1. Fill in the missing details of the following calculation:

$$
\begin{gathered}
\frac{1}{a+h}=\frac{1}{a}+\frac{1}{a+h}-\frac{1}{a}=\frac{1}{a}+\frac{-h}{a^{2}+a h} \\
=\frac{1}{a}-\frac{h}{a^{2}}+\frac{-h}{a^{2}+a h}+\frac{h}{a^{2}}=\frac{1}{a}-\frac{1}{a^{2}} h+\frac{a h^{2}}{a^{4}+a^{3} h} .
\end{gathered}
$$

2. Letting $\epsilon(h)=\frac{a h^{2}}{a^{4}+a^{3} h}$, check that $\lim _{h \rightarrow 0} \frac{\epsilon(h)}{h}=0$.
3. Deduce that the rate of change of $\frac{1}{x}$ at the x-value a is $-\frac{1}{a^{2}}$.
