Instructions: Give brief, clear answers. It is not expected that most people will be able to answer all the questions, just do what you can in 75 minutes.

- Ι. Verify that if f is even and q is odd, then $f \circ q$ is even. Verify that if f and q are both odd, then $f \circ q$ is (6)odd.
- II. Write a precise definiti э.

tion of
$$\lim_{x \to a} f(x) = L$$
. Write a precise definition of $\lim_{x \to a^{-}} f(x) = \infty$

- III. The graph of a certain function f(x) is the line y = x + 1, for $x \le \pi$, and $y = \pi + 1$, for $x \ge \pi$. In separate coordinate systems, sketch the graphs of the following functions: $f(x/2)/2, -\frac{1}{2}f(x+\pi)$ (8)
- IV. State the Intermediate Value Theorem. Assuming that the sine function is continuous, use the Intermediate
- Value Theorem to show that there is a number x between 0 and $\pi/2$ for which $\sin(x) = 1/\sqrt{3}$. (8)
- Give an example of two functions f(x) and g(x) and a point a such that $\lim_{x \to a} f(x)$ and $\lim_{x \to a} g(x)$ do not V. (4)exist, but $\lim_{x \to a} \frac{f(x)}{q(x)}$ does exist.
- The graph of a certain function y = f(x) is shown VI. at the right, along with the dashed line y = 1. The (6)function satisfies f(2) = 1. Let m_{sec} be the slope of the secant line from the point (2, f(2)) to the point (2+h, f(2+h)), as a function of h. In an h-y coordinate system, make a reasonably accurate graph of $y = m_{sec}$ for $-1 \le h \le 1$ (at the very least, correctly indicate where m_{sec} is positive or negative).

- VII. We established in class that $|\sin(x) - \sin(a)| \leq |x - a|$ for any two numbers x and a. Use this fact to give
- an ϵ - δ proof that $\lim \sin(x) = \sin(a)$. What property of the sine function does this verify? (8)

VIII. Recall that the rate of change of a function f(x) at the x-value a is the unique number m for which $f(a+h) = f(a) + mh + \epsilon(h)$ with $\lim_{h \to 0} \frac{\epsilon(h)}{h} = 0$ (if such a number *m* exists). Use this fact together with the (6)calculation $\cos(a+h) = \cos(a)\cos(h) - \sin(a)\sin(h) = \cos(a) - \sin(a)h + \sin(a)(h - \sin(h)) + \cos(a)(\cos(h) - 1)$ and the known limits $\lim_{h \to 0} \frac{\sin(h)}{h} = 1$ and $\lim_{h \to 0} \frac{\cos(h) - 1}{h} = 0$ to show that the rate of change of $\cos(x)$ at the x-value a is $-\sin(a)$.

Page 2

IX. Calculate the limits $\lim_{x \to 7} \frac{\sqrt{x+2}-3}{x-7}$ (without using l'Hôpital's rule, of course) and $\lim_{h \to 0} \frac{\sin(h)}{2h\cos(h)}$.

X. This is a magnified diagram of a small por-(6) tion of the unit circle, where a and x are two angles that are very close together. Label the angles of the right triangle and the lengths of its two legs in terms of a and x. Use these values to obtain an estimate of $\frac{\cos(x) - \cos(a)}{x - a}$, and use this estimate to see that the rate of change of the cosine function at the x-value a is $-\sin(a)$.

