Math 5853 homework

Instructions: All problems should be prepared for presentation at the problem sessions. If a problem has a due date listed, then it should be written up formally and turned in on the due date.
22. (due $9 / 21$) Let $X=(\mathbb{R}, \mathcal{L})$, the reals with the lower-limit topology, and let $Y=\mathbb{R}$, the reals with the standard topology. Prove that a function $f: X \rightarrow Y$ is continuous if and only if for every $x_{0} \in X, \lim _{x \rightarrow x_{0}^{+}} f(x)$ exists and equals $f\left(x_{0}\right)$ (where $\lim _{x \rightarrow x_{0}^{+}} f(x)$ means the limit as x approaches x_{0} from the right).
23. (9/21) Let X and Y be topological spaces with the cofinite topology. State and prove a simple criterion, in terms of the point preimages $f^{-1}(y)$, for a function $f: X \rightarrow Y$ to be continuous.
24. Prove or give a counterexample: Suppose $X=\cup_{i=1}^{n} S_{i}$ where each S_{i} is either an open subset or a closed subset. If $f: X \rightarrow Y$ is a function whose restriction to each S_{i} is continuous, then f is continuous.
25. (9/21) Prove that if X is a Hausdorff topological space such that every bijection $f: X \rightarrow X$ is a homeomorphism, then X has the discrete topology. Hint: Suppose that X has the property, and that some $\left\{x_{0}\right\}$ is not an open set. Choose $y_{0} \neq x_{0}$ and consider the bijection that interchanges x_{0} and y_{0} and fixes all other points.
26. (9/21) Consider a topological space X, whose points are closed subsets, such that every bijection from X to X is a homeomorphism. Show by example that X need not have the discrete topology.
27. $(9 / 21)$ Show that if R_{θ} is not the identity, and v is a vector, then $T_{v} \circ R_{\theta}(p)=p$ for some $p \in \mathbb{R}^{2}$. (This can be proven either algebraically or geometrically, try to find both kinds of proofs.)
28. $(9 / 21)$ A dilation of a metric space (X, d) is a map $f: X \rightarrow X$ such that for some $k>0$ and every $x, y \in X, d(f(x), f(y))=k d(x, y)$.

1. Prove that a dilation is continuous and injective.
2. Prove that a composition of dilations is a dilation.
3. Prove or give a counterexample: If f_{1} and f_{2} are dilations with associated constant $k=2$, and there exists a point $x_{0} \in X$ with $f_{1}\left(x_{0}\right)=f_{2}\left(x_{0}\right)$, then $f_{1}=f_{2}$.
4. Let X be the unit circle in \mathbb{R}^{2}, with the standard metric. Prove that every dilation of X is an isometry.
