Math 5853 homework

Instructions: All problems should be prepared for presentation at the problem sessions. If a problem has a due date listed, then it should be written up formally and turned in on the due date.

- 29. Verify the following facts about the isometries that generate $\text{Isom}(\mathbb{R}^2)$. The first one is worked here as an example, using the fact that R_{θ} is linear.
 - 1. $T_{R_{\theta}(v)}R_{\theta} = R_{\theta}T_{v}$. Solution: For any $p \in \mathbb{R}^{2}$, $R_{\theta}T_{v}(p) = R_{\theta}(p+v) = R_{\theta}(p) + R_{\theta}(v) = T_{R_{\theta}(v)}R_{\theta}(p)$.
 - 2. $\tau T_v = T_{\tau(v)} \tau$

3. $\tau R_{\theta} = R_{-\theta} \tau$ (One can regard τ as multiplication by $\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$, R_{θ} as multiplication by $\begin{pmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix}$ and use matrix multiplication. Or, note that τ is linear and observe geometrically that the two sides have the same geometric effect on the standard basis vectors e_1 and e_2 . Or, observe geometrically that both sides of the equation have the same effect on e_1 , e_2 , and the origin and use the lemma used in class.)

- 30. (9/28) Adapt the approach we used to analyze the isometries of \mathbb{R}^2 to analyze Isom(\mathbb{R}), as follows:
 - 1. Prove that if an isometry J of \mathbb{R} fixes 0 and 1, then J = id.
 - 2. Prove that every isometry J of \mathbb{R} can be written uniquely as $T_r \tau^{\epsilon}$, where T_r is translation by $r, \tau(x) = -x$, and ϵ is either 0 or 1.
- 31. (10/5) Write elements of \mathbb{R}^2 as column vectors. Let $a_0 = \begin{pmatrix} 6\\ 3 \end{pmatrix}$, $a_1 = \begin{pmatrix} 3\\ 5 \end{pmatrix}$, and $a_2 = \begin{pmatrix} 3\\ -2 \end{pmatrix}$.
 - 1. Calculate $v_1 = a_1 a_0$ and $v_2 = a_2 a_0$ and verify that they are linearly independent by forming the matrix $M = [v_1 v_2]$ and checking that its determinant is nonzero.
 - 2. Verify by computation that the affine homeomorphism $T_{a_0} \circ L$, where L is multiplication by M, carries e_i to a_i for $0 \le i \le 2$.
- 3. Graph the points a_0 , a_1 , and a_2 , and show the following two subsets of \mathbb{R}^2 : $\lambda_1 = \lambda_2$, $\{\sum \lambda_i a_i \mid 0 \le \lambda_i \le 1/2 \text{ for } 0 \le i \le 2\}.$