Math 5853 homework

Instructions: All problems should be prepared for presentation at the problem sessions. If a problem has a due date listed, then it should be written up formally and turned in on the due date.
29. Verify the following facts about the isometries that generate $\operatorname{Isom}\left(\mathbb{R}^{2}\right)$. The first one is worked here as an example, using the fact that R_{θ} is linear.

1. $T_{R_{\theta}(v)} R_{\theta}=R_{\theta} T_{v}$. Solution: For any $p \in \mathbb{R}^{2}, R_{\theta} T_{v}(p)=R_{\theta}(p+v)=R_{\theta}(p)+$ $R_{\theta}(v)=T_{R_{\theta}(v)} R_{\theta}(p)$.
2. $\tau T_{v}=T_{\tau(v)} \tau$
3. $\tau R_{\theta}=R_{-\theta} \tau$ (One can regard τ as multiplication by $\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right), R_{\theta}$ as multiplication by $\left(\begin{array}{cc}\cos (\theta) & -\sin (\theta) \\ \sin (\theta) & \cos (\theta)\end{array}\right)$ and use matrix multiplication. Or, note that τ is linear and observe geometrically that the two sides have the same geometric effect on the standard basis vectors e_{1} and e_{2}. Or, observe geometrically that both sides of the equation have the same effect on e_{1}, e_{2}, and the origin and use the lemma used in class.)
4. $(9 / 28)$ Adapt the approach we used to analyze the isometries of \mathbb{R}^{2} to analyze $\operatorname{Isom}(\mathbb{R})$, as follows:
5. Prove that if an isometry J of \mathbb{R} fixes 0 and 1 , then $J=\mathrm{id}$.
6. Prove that every isometry J of \mathbb{R} can be written uniquely as $T_{r} \tau^{\epsilon}$, where T_{r} is translation by $r, \tau(x)=-x$, and ϵ is either 0 or 1 .
7. (10/5) Write elements of \mathbb{R}^{2} as column vectors. Let $a_{0}=\binom{6}{3}, a_{1}=\binom{3}{5}$, and $a_{2}=\binom{3}{-2}$.
8. Calculate $v_{1}=a_{1}-a_{0}$ and $v_{2}=a_{2}-a_{0}$ and verify that they are linearly independent by forming the matrix $M=\left[v_{1} v_{2}\right]$ and checking that its determinant is nonzero.
9. Verify by computation that the affine homeomorphism $T_{a_{0}} \circ L$, where L is multiplication by M, carries e_{i} to a_{i} for $0 \leq i \leq 2$.
10. Graph the points a_{0}, a_{1}, and a_{2}, and show the following two subsets of $\mathbb{R}^{2}: \lambda_{1}=\lambda_{2}$, $\left\{\sum \lambda_{i} a_{i} \mid 0 \leq \lambda_{i} \leq 1 / 2\right.$ for $\left.0 \leq i \leq 2\right\}$.
