Math 5853 homework

Instructions: All problems should be prepared for presentation at the problem sessions. If a problem has a due date listed, then it should be written up formally and turned in on the due date.
32. (10/5) Let a_{0}, a_{1}, a_{2} and b_{0}, b_{1}, b_{2} be two affinely independent sets in \mathbb{R}^{2}. Prove that the formula $M\left(\sum \lambda_{i} a_{i}\right)=\sum \lambda_{i} b_{i}$ in barycentric coordinates defines an affine homeomorphism M, which is the unique affine homeomorphism taking a_{i} to b_{i} for $0 \leq i \leq 2$. Hint: This can be done rather easily using facts that we established in class, in particular using our construction of the affine map $T_{a_{0}} \circ L$ that takes each e_{i} to a_{i}, the fact that $\left(T_{a_{0}} \circ L\right)^{-1}=L^{-1} \circ T_{-a_{0}}$, and the fact that in barycentric coordinates any affine map M takes $\sum \lambda_{i} p_{i}$ to $\sum \lambda_{i} M\left(p_{i}\right)$. For the uniqueness, consider another such affine homeomorphism M^{\prime} and examine $M^{-1} \circ M^{\prime}$.
33. (10/5) Let X be the space of bounded continuous functions from \mathbb{R} to \mathbb{R}, with the metric $d(f, g)=\sup _{x \in \mathbb{R}}\{|f(x)-g(x)|\}$.

1. Verify that this defines a metric on X. (This is easy if one uses the fact that $\sup \{a+b \mid a \in A, b \in B\} \leq \sup A+\sup B$. If you are not familiar with this fact, give a proof of it.)
2. Prove that (X, d) is not separable. Hint: Let $S=\left\{f_{1}, f_{2}, \ldots\right\}$ be any countable subset. Construct $f \in X$ so that $\left|f(n)-f_{n}(n)\right|>2$ for all n, and consider $B(f, 1)$.
3. (10/5) 1.9.26, 1.9.28
4. (10/5) 1.9.55, 1.9.56
5. (10/12) A map $f: X \rightarrow Y$ is called an open map if it takes open sets to open sets, and is called a closed map if it takes closed sets to closed sets. For example, a continuous bijection is a homeomorphism if and only if it is a closed map and an open map.
6. Give examples of continuous maps from \mathbb{R} to \mathbb{R} that are open but not closed, closed but not open, and neither open nor closed. For the latter two cases, try to give a surjective example.
7. Prove that a continuous map from a compact space to a Hausdorff space must be closed.
8. Prove that a projection map from a product $\prod_{i=1}^{n} X_{i}$ to one of its factors is open, but need not be closed.
