Math 5853 homework

Instructions: All problems should be prepared for presentation at the problem sessions. If a problem has a due date listed, then it should be written up formally and turned in on the due date.
37. (10/12) A map $f: X \rightarrow Y$ is called a local homeomorphism if for each $x \in X$ there exists a neighborhood U such that f carries U homeomorphically to a neighborhood of $f(x)$. Examples of local homeomorphisms are the map $p: \mathbb{R} \rightarrow S^{1}$ that sends t to $(\cos (2 \pi t), \sin (2 \pi t))$ and the maps $p_{n}: S^{1} \rightarrow S^{1}$ that send $(\cos (2 \pi t), \sin (2 \pi t))$ to $(\cos (2 \pi n t), \sin (2 \pi n t))$.

1. Verify that any local homeomorphism is an open map.
2. Prove that the local homeomorphism p is not a closed map.
3. (10/19) Prove that if \mathcal{B}_{i} is a basis for the topology on X_{i} for $1 \leq i \leq 2$, then $\left\{B_{1} \times\right.$ $\left.B_{2} \mid B_{i} \in \mathcal{B}_{i}\right\}$ is a basis for the product topology on $X_{1} \times X_{2}$.
4. (10/19) Prove that if (X, d) is a metric space, then $d: X \times X \rightarrow \mathbb{R}$ is continuous.
5. (10/19) Prove that if A and B are disjoint compact subsets of a metric space (X, d), then there exists a positive number δ such that $d(a, b) \geq \delta$ for every $a \in A$ and $b \in B$. In fact, there exist $a_{0} \in A$ and $b_{0} \in B$ such that $d\left(a_{0}, b_{0}\right) \leq d(a, b)$ for every $a \in A$ and $b \in B$. Hint: $A \times B$ is compact. Consider the positive function $\left.d\right|_{A \times B}: A \times B \rightarrow \mathbb{R}$.
6. (10/19) Let X be a Hausdorff space. Prove that if A and B are disjoint compact subsets of X, then there exist disjoint open subsets U and V with $A \subseteq U$ and $B \subseteq V$. Deduce that a compact Hausdorff space is normal.
7. (10/19) Let X and Y be spaces, and assume that Y is compact. Let $x_{0} \in X$, and let W be an open subset of $X \times Y$ for which $\left\{x_{0}\right\} \times Y \subseteq W$. Prove that there exists an open neighborhood U of x_{0} such that $U \times Y \subseteq W$.
8. (10/26) Let X be a space and define the diagonal $\Delta \subseteq X \times X$ to be $\{(x, x) \mid x \in X\}$. Prove the following.
9. Δ is homeomorphic to X.
10. Δ is a closed subset of $X \times X$ if and only if X is Hausdorff.
11. If X is Hausdorff and $f, g: Y \rightarrow X$ are two continuous maps, then $\{y \in Y \mid f(y)=$ $g(y)\}$ is a closed subset of Y. Hint: define a map from Y to $X \times X$ by sending y to $(f(y), g(y))$.
