Math 5853 homework

Instructions: All problems should be prepared for presentation at the problem sessions. If a problem has a due date listed, then it should be written up formally and turned in on the due date.

- 53. (11/16) Let (X, d) be a metric space. Define $\overline{d} \colon X \times X \to \mathbb{R}$ by $\overline{d}(x, y) = d(x, y)$ when $d(x, y) \leq 1$ and $\overline{d}(x, y) = 1$ when $d(x, y) \geq 1$.
 - 1. Prove that \overline{d} is a metric on X.
 - 2. Observe that $B_{\overline{d}}(x,\epsilon) = B_d(x,\epsilon)$ when $\epsilon \leq 1$ and $B_{\overline{d}}(x,\epsilon) = X$ when $\epsilon > 1$.
 - 3. Prove that the metric topology on X for \overline{d} equals the metric topology on X for d. Hint: use the Basis Recognition Theorem to prove that $\{B_{\overline{d}}(x,\epsilon)\}$ is a basis for the topology on (X, d).

As a consequence of the previous problem, we can always choose the metric of a metrizable space in such a way that the space has diameter at most 1.

- 54. (11/16) Let $\prod_{\alpha \in \mathcal{A}} X_{\alpha}$ be a product of spaces, and let x_n be a sequence of points in $\prod_{\alpha \in \mathcal{A}} X_{\alpha}$. Prove that x_n converges to x_0 if and only if $\pi_{\alpha}(x_n)$ converges to $\pi_{\alpha}(x_0)$ in X_{α} for every α in \mathcal{A} .
- 55. (11/16) Let $X = \prod_{\alpha \in \mathcal{A}} \mathbb{R}$, where \mathcal{A} is an uncountable set. Let 0 be the point with all coordinates 0, and let $A = \{(x_{\alpha}) \in \prod_{\alpha \in \mathcal{A}} \mathbb{R} \mid x_{\alpha} \in \{0, 1\} \text{ and } x_{\alpha} = 1 \text{ for all but finitely many } \alpha\}.$
 - 1. Prove that 0 is in \overline{A} .
 - 2. Prove that there is no sequence of points of A that converges to 0.
 - 3. Deduce that X is not metrizable.
- 56. (11/16) Prove that a product of path-connected spaces is path-connected. Hint: Use the Fundamental Theorem for Products.
- 57. (11/30) Let A be a closed subset of a normal space X. Let $f: A \to \prod_{\alpha \in \mathcal{A}} X_{\alpha}$ be continuous, where each X_{α} is homeomorphic either to \mathbb{R} or to a closed interval in \mathbb{R} . Prove that f extends to X.
- 58. (11/30) Suppose X is a normal space containing an infinite discrete closed subset $A \subset X$. Prove that there exists a continuous unbounded function from X to \mathbb{R} . Deduce that in a compact space, every infinite subset has a limit point in the space. Hint: If A is an infinite subset that has no limit point in X, then A contains a countably infinite subset $A_0 = \{a_1, a_2, \ldots\}$ that has no limit point. Such a subset must be a discrete, so $f: A_0 \to \mathbb{R}$ defined by $f(a_n)$ is continuous, and A_0 must be closed.