Math 5853 homework

Instructions: All problems should be prepared for presentation at the problem sessions. If a problem has a due date listed, then it should be written up formally and turned in on the due date.

- 59. (11/30) Let $F_n: X \to \mathbb{R}$ be a sequence of functions. Suppose that there are a number C > 0 and a number $r \in (0, 1)$ such that $|F_{n+1}(x) F_n(x)| \leq Cr^n$ for all x in X.
 - 1. Tell why $\lim_{n\to\infty} F_n(x)$ exists for each $x \in X$. Hint: observe that the series $\sum_{k=1}^{\infty} F_{k+1}(x) F_k(x)$ is absolutely convergent.
 - 2. Define $F: X \to \mathbb{R}$ by $F(x) = \lim_{n \to \infty} F_n(x)$. Prove that the sequence F_n converges uniformly to F (that is, for every $\epsilon > 0$ there exists N such that $|F_n(x) F(x)| < \epsilon$ for all $n \ge N$ and for all $x \in X$).
 - 3. Prove that if $g_n \colon X \to \mathbb{R}$ is a sequence of continuous functions that converges uniformly to a function $g \colon X \to \mathbb{R}$, then g is also continuous.
- 60. (11/30) Let A be a closed subset of a normal space X, and let $f: A \to [a, b]$ be continuous. Suppose that f extends to a continuous map $G: X \to \mathbb{R}$. Prove that f extends to a continuous map $F: X \to [a, b]$. Hint: Construct a continuous map $R: \mathbb{R} \to [a, b]$ that extends the identity on [a, b], and put $F = R \circ G$.
- 61. (12/7) Let X be the quotient space obtained from S^1 by identifying all points in the lower half of S^1 to a single point. Prove that X is homeomorphic to S^1 . Hint: consider the map $S^1 \to S^1$ that takes $e^{2\pi i t}$ to $e^{4\pi i t}$ for $0 \le t \le 1/2$ and takes $e^{2\pi i t}$ to 1 for $1/2 \le t \le 1$.
- 62. (12/7) Let X be the quotient space obtained from S^2 by identifying two points whenever they have the same z-coordinate (where as usual, S^2 is regarded as a subset of \mathbb{R}^3). Prove that the quotient space is homeomorphic to [-1, 1].
- 63. (12/7) Define the cone on X, C(X), to be the quotient space obtained by identifying the subspace $X \times \{1\}$ of $X \times I$ to a point.
 - 1. The *n*-ball D^n is defined to be $\{(x_1, \ldots, x_n) \in \mathbb{R}^n \mid \sum_{i=1}^n x_i^2 = 1\}$. Prove that $C(S^n)$ is homeomorphic to D^{n+1} . Hint: define $f: C(S^n) \to D^{n+1}$ by f([(x,t)]) = (1-t)x.
 - 2. Prove that C(X) is path-connected. Deduce that any X is a subspace of a pathconnected space.
- 64. (1/18) The Klein bottle K can be constructed from two annuli A_1 and A_2 by identifying their boundaries in a certain way. For each of the three descriptions of K discussed in class (two Möbius bands with boundaries identified, the square with certain identifications on its boundary, and $S^1 \times I$ with the two ends identified), make a drawing showing where A_1 and A_2 appear in K.