Math 5853 homework

Instructions: All problems should be prepared for presentation at the problem sessions. If a problem has a due date listed, then it should be written up formally and turned in on the due date.
59. (11/30) Let $F_{n}: X \rightarrow \mathbb{R}$ be a sequence of functions. Suppose that there are a number $C>0$ and a number $r \in(0,1)$ such that $\left|F_{n+1}(x)-F_{n}(x)\right| \leq C r^{n}$ for all x in X.

1. Tell why $\lim _{n \rightarrow \infty} F_{n}(x)$ exists for each $x \in X$. Hint: observe that the series $\sum_{k=1}^{\infty} F_{k+1}(x)-F_{k}(x)$ is absolutely convergent.
2. Define $F: X \rightarrow \mathbb{R}$ by $F(x)=\lim _{n \rightarrow \infty} F_{n}(x)$. Prove that the sequence F_{n} converges uniformly to F (that is, for every $\epsilon>0$ there exists N such that $\left|F_{n}(x)-F(x)\right|<\epsilon$ for all $n \geq N$ and for all $x \in X$).
3. Prove that if $g_{n}: X \rightarrow \mathbb{R}$ is a sequence of continuous functions that converges uniformly to a function $g: X \rightarrow \mathbb{R}$, then g is also continuous.
4. (11/30) Let A be a closed subset of a normal space X, and let $f: A \rightarrow[a, b]$ be continuous. Suppose that f extends to a continuous map $G: X \rightarrow \mathbb{R}$. Prove that f extends to a continuous map $F: X \rightarrow[a, b]$. Hint: Construct a continuous map $R: \mathbb{R} \rightarrow[a, b]$ that extends the identity on $[a, b]$, and put $F=R \circ G$.
5. (12/7) Let X be the quotient space obtained from S^{1} by identifying all points in the lower half of S^{1} to a single point. Prove that X is homeomorphic to S^{1}. Hint: consider the map $S^{1} \rightarrow S^{1}$ that takes $e^{2 \pi i t}$ to $e^{4 \pi i t}$ for $0 \leq t \leq 1 / 2$ and takes $e^{2 \pi i t}$ to 1 for $1 / 2 \leq t \leq 1$.
6. (12/7) Let X be the quotient space obtained from S^{2} by identifying two points whenever they have the same z-coordinate (where as usual, S^{2} is regarded as a subset of $\left.\mathbb{R}^{3}\right)$. Prove that the quotient space is homeomorphic to $[-1,1]$.
7. (12/7) Define the cone on $X, C(X)$, to be the quotient space obtained by identifying the subspace $X \times\{1\}$ of $X \times I$ to a point.
8. The n-ball D^{n} is defined to be $\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n} \mid \sum_{i=1}^{n} x_{i}^{2}=1\right\}$. Prove that $C\left(S^{n}\right)$ is homeomorphic to D^{n+1}. Hint: define $f: C\left(S^{n}\right) \xrightarrow{\rightarrow} D^{n+1}$ by $f([(x, t)])=$ $(1-t) x$.
9. Prove that $C(X)$ is path-connected. Deduce that any X is a subspace of a pathconnected space.
10. (1/18) The Klein bottle K can be constructed from two annuli A_{1} and A_{2} by identifying their boundaries in a certain way. For each of the three descriptions of K discussed in class (two Möbius bands with boundaries identified, the square with certain identifications on its boundary, and $S^{1} \times I$ with the two ends identified), make a drawing showing where A_{1} and A_{2} appear in K.
