
Products of sets

If X1, X2, X3 . . . is a list of sets, what do we mean by
∏∞

i=1Xi ? More generally, if
{Xα}α∈A is an indexed collection of sets (one for each α in the set A), what do we mean by∏
α∈A

Xα ?

Intuitively, based on our experience with products of finitely many sets,
∏
α∈A

Xα should be

the collection of ordered tuples (xα), where there is one “coordinate” for each α, and that
coordinate is an element of Xα, and two of these tuples are equal if and only if they have
the same coordinate for each α.

Formally, we define ∏
α∈A

Xα = {ψ : A → ∪α∈AXα | ψ(α) ∈ Xα} .

That is, the product is the set of all selections of one element from each of the factors. If
some Xα is empty, then

∏
Xα is empty. If all Xα are nonempty, then the Axiom of Choice

implies (in fact, is equivalent to the assertion) that
∏
Xα must be nonempty.

Example 1: If A = {1, 2}, X1 = R, and X2 = R, we have

R× R = R2 =
2∏

i=1

R = {ψ : {1, 2} → R} ←→ {(x, y) | x, y ∈ R}

ψ defined by ψ(1) = x and ψ(2) = y ←→ (x, y)

Example 2:
∏
R

R = {f : R→ R}

To understand products more conceptually, we need one more definition. For each β ∈ A,

define πβ :
∏
α∈A

Xα → Xβ by the rule πβ(ψ) = ψ(β).

Theorem 1. Let S be a set, and suppose that for each α ∈ A there is a function fα : S → Xα.
Then there exists a unique function f : S →

∏
Xα so that for all α ∈ A, fα = πα ◦ f .

Proof. Define f by the rule f(s)(α) = fα(s). Then for each α and each s ∈ S, we have

πa ◦ f(s) = πa(f(s)) = f(s)(α) = fα(s)

so πa ◦ f = fα. This proves existence of f . For uniqueness, suppose that f ′ : S →
∏
Xα is

any function satisfying πα ◦ f ′ = fα. Then for each s ∈ S and each α ∈ A, we have

f ′(s)(α) = πα(f ′(s)) = πα ◦ f ′(s) = fα(s) = πα ◦ f(s) = πα(f(s)) = f(s)(α)

so f ′(s) = f(s) and therefore f ′ = f . �

One might wonder whether there is another way to construct products. Theorem 2 will
show that any construction giving an object with the property in Theorem 1 must be essen-
tially the same as

∏
Xα.
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Theorem 2. Let {Xα}α∈A be an indexed collection of sets. Suppose that X is any set for
which there are functions π′α : X → Xα with the property that: if S is any set and for each
α ∈ A there is a function fα : S → Xα, then there exists a unique function f : S → X so
that for all α ∈ A, fα = π′α ◦ f . Then there is a bijection Φ: X →

∏
Xα with the property

that πα ◦ Φ = π′α for all α ∈ A.

Proof. By Theorem 1 applied with S = X and fα = π′α, there exists a unique function
Ψ: X →

∏
Xα so that for each α ∈ A, πα ◦ Φ = π′α. So it remains only to show that Ψ

is a bijection. Applying the property that X satisfies by hypothesis, with S =
∏
Xa and

the πα in the role of fα, gives a function Ψ:
∏
Xα → X satisfying π′a ◦ Ψ = πα. We will

show that Ψ is an inverse to Φ. We have ΦΨ:
∏
Xα →

∏
Xα and παΦΨ = π′αΨ = πα.

Also, for the identity function id :
∏
Xα →

∏
Xα, we have πα ◦ id = πα. By the uniqueness

property in Theorem 1, this shows that ΦΨ equals the identity function on
∏
Xα. A similar

argument, using the uniqueness property hypothesized in Theorem 2, shows that ΨΦ equals
the identity function on X. Therefore Φ is bijective. �


