Products of sets

If $X_1, X_2, X_3...$ is a list of sets, what do we mean by $\prod_{i=1}^{\infty} X_i$? More generally, if $\{X_{\alpha}\}_{{\alpha}\in\mathcal{A}}$ is an indexed collection of sets (one for each α in the set \mathcal{A}), what do we mean by $\prod_{i=1}^{\infty} X_{\alpha}$?

Intuitively, based on our experience with products of finitely many sets, $\prod_{\alpha \in A} X_{\alpha}$ should be

the collection of ordered tuples (x_{α}) , where there is one "coordinate" for each α , and that coordinate is an element of X_{α} , and two of these tuples are equal if and only if they have the same coordinate for each α .

Formally, we define

$$\prod_{\alpha \in \mathcal{A}} X_{\alpha} = \{ \psi \colon \mathcal{A} \to \bigcup_{\alpha \in \mathcal{A}} X_{\alpha} \mid \psi(\alpha) \in X_{\alpha} \} .$$

That is, the product is the set of all selections of one element from each of the factors. If some X_{α} is empty, then $\prod X_{\alpha}$ is empty. If all X_{α} are nonempty, then the Axiom of Choice implies (in fact, is equivalent to the assertion) that $\prod X_{\alpha}$ must be nonempty.

Example 1: If $A = \{1, 2\}$, $X_1 = \mathbb{R}$, and $X_2 = \mathbb{R}$, we have

$$\mathbb{R} \times \mathbb{R} = \mathbb{R}^2 = \prod_{i=1}^2 \mathbb{R} = \{ \psi \colon \{1, 2\} \to \mathbb{R} \} \longleftrightarrow \{ (x, y) \mid x, y \in \mathbb{R} \}$$

$$\psi \text{ defined by } \psi(1) = x \text{ and } \psi(2) = y \longleftrightarrow (x, y)$$

Example 2:
$$\prod_{\mathbb{D}} \mathbb{R} = \{ f \colon \mathbb{R} \to \mathbb{R} \}$$

To understand products more conceptually, we need one more definition. For each $\beta \in \mathcal{A}$, define $\pi_{\beta} \colon \prod_{\alpha \in \mathcal{A}} X_{\alpha} \to X_{\beta}$ by the rule $\pi_{\beta}(\psi) = \psi(\beta)$.

Theorem 1. Let S be a set, and suppose that for each $\alpha \in \mathcal{A}$ there is a function $f_{\alpha} \colon S \to X_{\alpha}$. Then there exists a unique function $f \colon S \to \prod X_{\alpha}$ so that for all $\alpha \in \mathcal{A}$, $f_{\alpha} = \pi_{\alpha} \circ f$.

Proof. Define f by the rule $f(s)(\alpha) = f_{\alpha}(s)$. Then for each α and each $s \in S$, we have

$$\pi_a \circ f(s) = \pi_a(f(s)) = f(s)(\alpha) = f_\alpha(s)$$

so $\pi_a \circ f = f_\alpha$. This proves existence of f. For uniqueness, suppose that $f' \colon S \to \prod X_\alpha$ is any function satisfying $\pi_\alpha \circ f' = f_\alpha$. Then for each $s \in S$ and each $\alpha \in \mathcal{A}$, we have

$$f'(s)(\alpha) = \pi_{\alpha}(f'(s)) = \pi_{\alpha} \circ f'(s) = f_{\alpha}(s) = \pi_{\alpha} \circ f(s) = \pi_{\alpha}(f(s)) = f(s)(\alpha)$$
 so $f'(s) = f(s)$ and therefore $f' = f$.

One might wonder whether there is another way to construct products. Theorem 2 will show that any construction giving an object with the property in Theorem 1 must be essentially the same as $\prod X_{\alpha}$.

Theorem 2. Let $\{X_{\alpha}\}_{{\alpha}\in\mathcal{A}}$ be an indexed collection of sets. Suppose that X is any set for which there are functions $\pi'_{\alpha} \colon X \to X_{\alpha}$ with the property that: if S is any set and for each $\alpha \in \mathcal{A}$ there is a function $f_{\alpha} \colon S \to X_{\alpha}$, then there exists a unique function $f \colon S \to X$ so that for all $\alpha \in \mathcal{A}$, $f_{\alpha} = \pi'_{\alpha} \circ f$. Then there is a bijection $\Phi \colon X \to \prod X_{\alpha}$ with the property that $\pi_{\alpha} \circ \Phi = \pi'_{\alpha}$ for all $\alpha \in \mathcal{A}$.

Proof. By Theorem 1 applied with S = X and $f_{\alpha} = \pi'_{\alpha}$, there exists a unique function $\Psi \colon X \to \prod X_{\alpha}$ so that for each $\alpha \in \mathcal{A}$, $\pi_{\alpha} \circ \Phi = \pi'_{\alpha}$. So it remains only to show that Ψ is a bijection. Applying the property that X satisfies by hypothesis, with $S = \prod X_{\alpha}$ and the π_{α} in the role of f_{α} , gives a function $\Psi \colon \prod X_{\alpha} \to X$ satisfying $\pi'_{\alpha} \circ \Psi = \pi_{\alpha}$. We will show that Ψ is an inverse to Φ . We have $\Phi\Psi \colon \prod X_{\alpha} \to \prod X_{\alpha}$ and $\pi_{\alpha}\Phi\Psi = \pi'_{\alpha}\Psi = \pi_{\alpha}$. Also, for the identity function $id \colon \prod X_{\alpha} \to \prod X_{\alpha}$, we have $\pi_{\alpha} \circ id = \pi_{\alpha}$. By the uniqueness property in Theorem 1, this shows that $\Phi\Psi$ equals the identity function on $\prod X_{\alpha}$. A similar argument, using the uniqueness property hypothesized in Theorem 2, shows that $\Psi\Phi$ equals the identity function on X. Therefore Φ is bijective.