Products of sets

If $X_{1}, X_{2}, X_{3} \ldots$ is a list of sets, what do we mean by $\prod_{i=1}^{\infty} X_{i}$? More generally, if $\left\{X_{\alpha}\right\}_{\alpha \in \mathcal{A}}$ is an indexed collection of sets (one for each α in the set \mathcal{A}), what do we mean by $\prod_{\alpha \in \mathcal{A}} X_{\alpha}$?

Intuitively, based on our experience with products of finitely many sets, $\prod_{\alpha \in \mathcal{A}} X_{\alpha}$ should be the collection of ordered tuples $\left(x_{\alpha}\right)$, where there is one "coordinate" for each α, and that coordinate is an element of X_{α}, and two of these tuples are equal if and only if they have the same coordinate for each α.

Formally, we define

$$
\prod_{\alpha \in \mathcal{A}} X_{\alpha}=\left\{\psi: \mathcal{A} \rightarrow \cup_{\alpha \in \mathcal{A}} X_{\alpha} \mid \psi(\alpha) \in X_{\alpha}\right\}
$$

That is, the product is the set of all selections of one element from each of the factors. If some X_{α} is empty, then $\prod X_{\alpha}$ is empty. If all X_{α} are nonempty, then the Axiom of Choice implies (in fact, is equivalent to the assertion) that $\prod X_{\alpha}$ must be nonempty.

Example 1: If $\mathcal{A}=\{1,2\}, X_{1}=\mathbb{R}$, and $X_{2}=\mathbb{R}$, we have

$$
\begin{aligned}
\mathbb{R} \times \mathbb{R}= & \mathbb{R}^{2}=\prod_{i=1}^{2} \mathbb{R}=\{\psi:\{1,2\} \rightarrow \mathbb{R}\} \longleftrightarrow\{(x, y) \mid x, y \in \mathbb{R}\} \\
& \psi \text { defined by } \psi(1)=x \text { and } \psi(2)=y \longleftrightarrow(x, y)
\end{aligned}
$$

Example 2: $\prod_{\mathbb{R}} \mathbb{R}=\{f: \mathbb{R} \rightarrow \mathbb{R}\}$
To understand products more conceptually, we need one more definition. For each $\beta \in \mathcal{A}$, define $\pi_{\beta}: \prod_{\alpha \in \mathcal{A}} X_{\alpha} \rightarrow X_{\beta}$ by the rule $\pi_{\beta}(\psi)=\psi(\beta)$.

Theorem 1. Let S be a set, and suppose that for each $\alpha \in \mathcal{A}$ there is a function $f_{\alpha}: S \rightarrow X_{\alpha}$. Then there exists a unique function $f: S \rightarrow \prod X_{\alpha}$ so that for all $\alpha \in \mathcal{A}, f_{\alpha}=\pi_{\alpha} \circ f$.

Proof. Define f by the rule $f(s)(\alpha)=f_{\alpha}(s)$. Then for each α and each $s \in S$, we have

$$
\pi_{a} \circ f(s)=\pi_{a}(f(s))=f(s)(\alpha)=f_{\alpha}(s)
$$

so $\pi_{a} \circ f=f_{\alpha}$. This proves existence of f. For uniqueness, suppose that $f^{\prime}: S \rightarrow \prod X_{\alpha}$ is any function satisfying $\pi_{\alpha} \circ f^{\prime}=f_{\alpha}$. Then for each $s \in S$ and each $\alpha \in \mathcal{A}$, we have

$$
f^{\prime}(s)(\alpha)=\pi_{\alpha}\left(f^{\prime}(s)\right)=\pi_{\alpha} \circ f^{\prime}(s)=f_{\alpha}(s)=\pi_{\alpha} \circ f(s)=\pi_{\alpha}(f(s))=f(s)(\alpha)
$$

so $f^{\prime}(s)=f(s)$ and therefore $f^{\prime}=f$.
One might wonder whether there is another way to construct products. Theorem 2 will show that any construction giving an object with the property in Theorem 1 must be essentially the same as ΠX_{α}.

Theorem 2. Let $\left\{X_{\alpha}\right\}_{\alpha \in \mathcal{A}}$ be an indexed collection of sets. Suppose that X is any set for which there are functions $\pi_{\alpha}^{\prime}: X \rightarrow X_{\alpha}$ with the property that: if S is any set and for each $\alpha \in \mathcal{A}$ there is a function $f_{\alpha}: S \rightarrow X_{\alpha}$, then there exists a unique function $f: S \rightarrow X$ so that for all $\alpha \in \mathcal{A}, f_{\alpha}=\pi_{\alpha}^{\prime} \circ f$. Then there is a bijection $\Phi: X \rightarrow \prod X_{\alpha}$ with the property that $\pi_{\alpha} \circ \Phi=\pi_{\alpha}^{\prime}$ for all $\alpha \in \mathcal{A}$.
Proof. By Theorem 1 applied with $S=X$ and $f_{\alpha}=\pi_{\alpha}^{\prime}$, there exists a unique function $\Psi: X \rightarrow \prod X_{\alpha}$ so that for each $\alpha \in \mathcal{A}, \pi_{\alpha} \circ \Phi=\pi_{\alpha}^{\prime}$. So it remains only to show that Ψ is a bijection. Applying the property that X satisfies by hypothesis, with $S=\Pi X_{a}$ and the π_{α} in the role of f_{α}, gives a function $\Psi: \prod X_{\alpha} \rightarrow X$ satisfying $\pi_{a}^{\prime} \circ \Psi=\pi_{\alpha}$. We will show that Ψ is an inverse to Φ. We have $\Phi \Psi: \prod X_{\alpha} \rightarrow \prod X_{\alpha}$ and $\pi_{\alpha} \Phi \Psi=\pi_{\alpha}^{\prime} \Psi=\pi_{\alpha}$. Also, for the identity function $i d: \prod X_{\alpha} \rightarrow \prod X_{\alpha}$, we have $\pi_{\alpha} \circ i d=\pi_{\alpha}$. By the uniqueness property in Theorem 1, this shows that $\Phi \Psi$ equals the identity function on $\prod X_{\alpha}$. A similar argument, using the uniqueness property hypothesized in Theorem 2 , shows that $\Psi \Phi$ equals the identity function on X. Therefore Φ is bijective.

