Math 5853 homework solutions

36. A map $f: X \rightarrow Y$ is called an open map if it takes open sets to open sets, and is called a closed map if it takes closed sets to closed sets. For example, a continuous bijection is a homeomorphism if and only if it is a closed map and an open map.
37. Give examples of continuous maps from \mathbb{R} to \mathbb{R} that are open but not closed, closed but not open, and neither open nor closed.
open but not closed: $f(x)=e^{x}$ is a homeomorphism onto its image $(0, \infty)$ (with the logarithm function as its inverse). If U is open, then $f(U)$ is open in $(0, \infty)$, and since $(0, \infty)$ is open in $\mathbb{R}, f(U)$ is open in \mathbb{R}. Therefore f is open. However, $f(\mathbb{R})=(0, \infty)$ is not closed, so f is not closed.
closed but not open: Constant functions are one example. We will give an example that is also surjective. Let $f(x)=0$ for $-1 \leq x \leq 1, f(x)=x-1$ for $x \geq 1$, and $f(x)=x+1$ for $x \leq-1(f$ is continuous by "gluing together on a finite collection of closed sets"). f is not open, since $(-1,1)$ is open but $f((-1,1))=\{0\}$ is not open. To show that f is closed, let C be any closed subset of \mathbb{R}. For $n \in \mathbb{Z}$, define $I_{n}=[n, n+1]$. Now, $f^{-1}\left(I_{n}\right)=[n+1, n+2]$ if $n \geq 1, f^{-1}\left(I_{0}\right)=[-1,2]$, $f^{-1}\left(I_{-1}\right)=[-2,1]$, and $f^{-1}\left(I_{n}\right)=[n-1, n]$ if $n \leq-2$. Let $W_{n}=f(C) \cap I_{n}$. We have $f^{-1}\left(W_{n}\right)=C \cap[n, n+1]$ if $n \geq 1, f^{-1}\left(W_{0}\right)=C \cap[-1,2], f^{-1}\left(W_{-1}\right)=$ $C \cap[2,1]$, and $f^{-1}\left(W_{n}\right)=C \cap[n-1, n]$ if $n \leq-2$. In all cases, $f^{-1}\left(W_{n}\right)$ is the intersection of C with a compact set, so $f^{-1}\left(W_{n}\right)$ is compact, and therefore W_{n} is compact since W_{n} is the image $f\left(f^{-1}\left(W_{n}\right)\right)$ of the compact set $f^{-1}\left(W_{n}\right)$. Since \mathbb{R} is Hausdorff, W_{n} is closed. Therefore $f(C)=\cup_{n=-\infty}^{\infty} W_{n}$ is the union of a locally finite collection of closed sets, so is closed.
neither open nor closed: Any function whose image is neither open nor closed (such as $f(x)=\frac{1}{x^{2}+1}$, whose image is $\left.(0,1]\right)$ takes \mathbb{R} to a set which is neither open nor closed, so gives an example. We will give an example that is also surjective. Define $f(x)=e^{x} \cos (x)$. This is not open, since $f((-\pi / 2, \pi / 2))$ is a half-open interval. It is not closed, since the closure of the image of the closed set $\{n \pi \mid n \in \mathbb{Z}\}$ contains 0 (because $\lim _{n \rightarrow-\infty} f(n \pi)=0$) but 0 is not in the image of this set.
38. Prove that a continuous map from a compact space to a Hausdorff space must be closed.

Let $f: X \rightarrow Y$ be continuous, where X is compact and Y is Hausdorff. Let C be closed in X. Then C is compact, hence $f(C)$ is compact. Since Y is Hausdorff, this implies that $f(C)$ is closed.
3. Prove that a projection map from a product to one of its factors is open, but need not be closed.

Let $\pi_{j}: \prod_{i=1}^{n} X_{i} \rightarrow X_{j}$ be the projection to the $j^{t h}$ factor. It suffices to prove that the image of a basis element is open, since if $U=\cup B_{\alpha}$ is a union of basis elements, then $\pi_{i}(U)=\cup \pi_{i}\left(B_{\alpha}\right)$. But any basis element is of the form $\prod_{i=1}^{n} U_{i}$, with each U_{i} open in X_{i}, and $\pi_{j}\left(\prod_{i=1}^{n} U_{i}\right)=U_{j}$.
37. A map $f: X \rightarrow Y$ is called a local homeomorphism if for each $x \in X$ there exists a neighborhood U such that f carries U homeomorphically to a neighborhood of $f(x)$. Examples of local homeomorphisms are the map $p: \mathbb{R} \rightarrow S^{1}$ that sends t to $(\cos (2 \pi t), \sin (2 \pi t))$ and the maps $p_{n}: S^{1} \rightarrow S^{1}$ that send $(\cos (2 \pi t), \sin (2 \pi t))$ to $(\cos (2 \pi n t), \sin (2 \pi n t))$.

1. Verify that any local homeomorphism is an open map.

Let $f: X \rightarrow Y$ be a local homeomorphism and let U be open in X. For each $x \in U$, choose an open neighborhood U_{x} that is carried homeomorphically by f to an open neighborhood $f\left(U_{x}\right)$ of $f(x)$. Now, $U \cap U_{x}$ is open in U_{x}, so is open in $f\left(U_{x}\right)$. Since f is a homeomorphism on $U_{x}, f\left(U \cap U_{x}\right)$ is open in $f\left(U_{x}\right)$, and since $f\left(U_{x}\right)$ is open in $Y, f\left(U \cap U_{x}\right)$ is open in Y. So $f(x) \in f\left(U \cap U_{x}\right) \subseteq f(U)$, showing that $f(U)$ is open.
2. Prove that the local homeomorphism p is not a closed map.

Let $C=\{n+1 /(2 n) \mid n \in \mathbb{N}\}$, a closed subset of \mathbb{R}. We have $f(n+1 /(2 n))=$ $(\cos (\pi / n), \sin (\pi / n))$. Since $\lim _{n \rightarrow \infty}(\cos (\pi / n), \sin (\pi / n))=(1,0),(1,0)$ is in the closure of $f(C)$, but $(1,0) \notin f(C)$.

Prove that if $x_{1}, \ldots x_{n}$ are n distinct points in the Hausdorff space, then there are disjoint open sets U_{1}, \ldots, U_{n} with $x_{i} \in U_{i}$.

In the problem session we found two good ways to prove this:
Saijuan's proof: For each $i \neq j$, choose disjoint open sets $U_{i, j}$ and $U_{j, i}$ with $x_{i} \in U_{i, j}$ and $x_{j} \in U_{j, i}$. Put $U_{i}=\cap_{k \neq i} U_{i, k}$, an intersection of $n-1$ open sets containing x_{i}. For $i \neq j, U_{i} \cap U_{j} \subseteq U_{i, j} \cap U_{j, i}=\emptyset$.
induction proof: For $n=2$, this is just the definition of Hausdorff. For $n>2$ we have by induction disjoint open sets V_{1}, \ldots, V_{n-1} with $x_{i} \in V_{i}$ for $i \leq n-1$. For $1 \leq i \leq n-1$, choose disjoint open sets T_{i} and W_{i} with $x_{i} \in T_{i}$ and $x_{n} \in W_{i}$. Put $U_{i}=T_{i} \cap V_{i}$ for $i \leq n-1$, and $U_{n}=\cap_{i=1}^{n-1} W_{i}$. Then U_{i} is open and contains x_{i} and if $i \neq j$ with $i, j<n$, we have $U_{i} \cap U_{j} \in V_{i} \cap V_{j}=\emptyset$, while $U_{i} \cap U_{n} \subseteq T_{i} \cap W_{i}=\emptyset$.

For (X, d) metric and $S \subseteq X$, define $d(x, S)=\inf \{d(x, s) \mid s \in S\}$.

1. Prove that $d(x, S)=0$ if and only if $x \in \bar{S}$. (Chase proved this in the problem session.)
2. Prove that $D: X \rightarrow \mathbb{R}$ defined by $D(x)=d(x, S)$ is continuous.

Let $x_{0} \in X$. Given $\epsilon>0$, put $\delta=\epsilon$. Suppose that $d\left(x_{0}, x\right)<\delta$. We will show that $d(x, S)<d\left(x_{0}, S\right)+\epsilon$ and $d(x, S)>d\left(x_{0}, S\right)-\epsilon$, which implies that $\left|d(x, S)-d\left(x_{0}, S\right)\right|<\epsilon$ and completes the proof that D is continuous.

For every $s \in S, d(x, s) \leq d\left(x, x_{0}\right)+d\left(x_{0}, s\right)$, so $d(x, S)-d\left(x, x_{0}\right) \leq d(x, s)-$ $d\left(x, x_{0}\right) \leq d\left(x_{0}, s\right)$. That is, $d(x, S)-d\left(x, x_{0}\right)$ is a lower bound for the $d\left(x_{0}, s\right)$, so $d(x, S)-d\left(x, x_{0}\right) \leq d\left(x_{0}, S\right)$, and therefore $d(x, S) \leq d\left(x_{0}, S\right)+d\left(x, x_{0}\right)<$ $d\left(x_{0}, S\right)+\epsilon$.
On the other hand, for every $x \in S, d\left(x_{0}, s\right) \leq d\left(x_{0}, x\right)+d(x, s)$, so $d(x, s) \geq$ $d\left(x_{0}, s\right)-d\left(x, x_{0}\right) \geq d\left(x_{0}, S\right)-d\left(x, x_{0}\right)$. That is, $d\left(x_{0}, S\right)-d\left(x, x_{0}\right)$ is a lower bound for the $d(x, s)$, so $d(x, S) \geq d\left(x_{0}, S\right)-d\left(x, x_{0}\right)>d\left(x_{0}, S\right)-\epsilon$.
3. Suppose that (X, d) is a metric space and A, B are disjoint closed subsets.Show that the function

$$
f(x)=\frac{d(x, A)-d(x, B)}{d(x, A)+d(x, B)}
$$

is a continous real-valued function $f: X \rightarrow[-1,1]$ with $f^{-1}(-1)=A$ and $f^{-1}(1)=B$.
We have just seen that the functions $d(x, A)$ and $d(x, B)$ are continuous. The denominator $d(x, A)+d(x, B)$ is never 0 , since if both $d(x, A)$ and $d(x, B)$ were 0 , we would have $x \in \bar{A} \cap \bar{B}=A \cap B=\emptyset$. So f is a continuous real-valued function on X. For any non-negative numbers α and β, not both 0 , we have $\frac{\alpha-\beta}{\alpha+\beta} \leq \frac{\alpha+\beta}{\alpha+\beta}=1$. This also implies that $\frac{\beta-\alpha}{\alpha+\beta} \leq 1$, so $\frac{\beta-\alpha}{\alpha+\beta} \geq-1$. Therefore the image of f lies in $[-1,1]$. Finally, $\frac{\alpha-\beta}{\alpha+\beta}=1$ if and only if $\alpha-\beta=\alpha+\beta$ if and only if $\beta=0$, so $f(x)=1$ if and only if $d(x, B)=0$, which means that $x \in \bar{B}=B$. Similarly, $\frac{\alpha-\beta}{\alpha+\beta}=-1$ if and only if $\alpha-\beta=-\alpha-\beta$ if and only if $\alpha=0$, so $f(x)=-1$ if and only if $d(x, A)=0$, which means that $x \in \bar{A}=A$.

