
Math 5853 homework solutions

36. A map f : X → Y is called an open map if it takes open sets to open sets, and is called
a closed map if it takes closed sets to closed sets. For example, a continuous bijection is a
homeomorphism if and only if it is a closed map and an open map.

1. Give examples of continuous maps from R to R that are open but not closed, closed
but not open, and neither open nor closed.

open but not closed: f(x) = ex is a homeomorphism onto its image (0,∞) (with
the logarithm function as its inverse). If U is open, then f(U) is open in (0,∞),
and since (0,∞) is open in R, f(U) is open in R. Therefore f is open. However,
f(R) = (0,∞) is not closed, so f is not closed.

closed but not open: Constant functions are one example. We will give an example
that is also surjective. Let f(x) = 0 for −1 ≤ x ≤ 1, f(x) = x− 1 for x ≥ 1, and
f(x) = x+1 for x ≤ −1 (f is continuous by “gluing together on a finite collection
of closed sets”). f is not open, since (−1, 1) is open but f((−1, 1)) = {0} is not
open. To show that f is closed, let C be any closed subset of R. For n ∈ Z,
define In = [n, n + 1]. Now, f−1(In) = [n + 1, n + 2] if n ≥ 1, f−1(I0) = [−1, 2],
f−1(I−1) = [−2, 1], and f−1(In) = [n − 1, n] if n ≤ −2. Let Wn = f(C) ∩ In.
We have f−1(Wn) = C ∩ [n, n + 1] if n ≥ 1, f−1(W0) = C ∩ [−1, 2], f−1(W−1) =
C ∩ [2, 1], and f−1(Wn) = C ∩ [n − 1, n] if n ≤ −2. In all cases, f−1(Wn) is the
intersection of C with a compact set, so f−1(Wn) is compact, and therefore Wn is
compact since Wn is the image f(f−1(Wn)) of the compact set f−1(Wn). Since R
is Hausdorff, Wn is closed. Therefore f(C) = ∪∞n=−∞Wn is the union of a locally
finite collection of closed sets, so is closed.

neither open nor closed: Any function whose image is neither open nor closed
(such as f(x) = 1

x2+1
, whose image is (0, 1]) takes R to a set which is neither

open nor closed, so gives an example. We will give an example that is also
surjective. Define f(x) = ex cos(x). This is not open, since f((−π/2, π/2)) is a
half-open interval. It is not closed, since the closure of the image of the closed set
{nπ | n ∈ Z} contains 0 (because lim

n→−∞
f(nπ) = 0) but 0 is not in the image of

this set.

2. Prove that a continuous map from a compact space to a Hausdorff space must be
closed.

Let f : X → Y be continuous, where X is compact and Y is Hausdorff. Let C be
closed in X. Then C is compact, hence f(C) is compact. Since Y is Hausdorff,
this implies that f(C) is closed.

3. Prove that a projection map from a product to one of its factors is open, but need not
be closed.



Let πj :
∏n

i=1 Xi → Xj be the projection to the jth factor. It suffices to prove
that the image of a basis element is open, since if U = ∪Bα is a union of basis
elements, then πi(U) = ∪πi(Bα). But any basis element is of the form

∏n
i=1 Ui,

with each Ui open in Xi, and πj(
∏n

i=1 Ui) = Uj.

37. A map f : X → Y is called a local homeomorphism if for each x ∈ X there exists a
neighborhood U such that f carries U homeomorphically to a neighborhood of f(x). Exam-
ples of local homeomorphisms are the map p : R → S1 that sends t to (cos(2πt), sin(2πt))
and the maps pn : S1 → S1 that send (cos(2πt), sin(2πt)) to (cos(2πnt), sin(2πnt)).

1. Verify that any local homeomorphism is an open map.

Let f : X → Y be a local homeomorphism and let U be open in X. For each
x ∈ U , choose an open neighborhood Ux that is carried homeomorphically by f
to an open neighborhood f(Ux) of f(x). Now, U ∩ Ux is open in Ux, so is open
in f(Ux). Since f is a homeomorphism on Ux, f(U ∩ Ux) is open in f(Ux), and
since f(Ux) is open in Y , f(U ∩ Ux) is open in Y . So f(x) ∈ f(U ∩ Ux) ⊆ f(U),
showing that f(U) is open.

2. Prove that the local homeomorphism p is not a closed map.

Let C = {n + 1/(2n) | n ∈ N}, a closed subset of R. We have f(n + 1/(2n)) =
(cos(π/n), sin(π/n)). Since lim

n→∞
(cos(π/n), sin(π/n)) = (1, 0), (1, 0) is in the clo-

sure of f(C), but (1, 0) /∈ f(C).

Prove that if x1, . . . xn are n distinct points in the Hausdorff space, then there are disjoint
open sets U1, . . . , Un with xi ∈ Ui.

In the problem session we found two good ways to prove this:

Saijuan’s proof: For each i 6= j, choose disjoint open sets Ui,j and Uj,i with xi ∈ Ui,j

and xj ∈ Uj,i. Put Ui = ∩k 6=iUi,k, an intersection of n− 1 open sets containing xi. For
i 6= j, Ui ∩ Uj ⊆ Ui,j ∩ Uj,i = ∅.

induction proof: For n = 2, this is just the definition of Hausdorff. For n > 2 we
have by induction disjoint open sets V1, . . . , Vn−1 with xi ∈ Vi for i ≤ n − 1. For
1 ≤ i ≤ n − 1, choose disjoint open sets Ti and Wi with xi ∈ Ti and xn ∈ Wi. Put
Ui = Ti ∩ Vi for i ≤ n− 1, and Un = ∩n−1

i=1 Wi. Then Ui is open and contains xi and if
i 6= j with i, j < n, we have Ui ∩ Uj ∈ Vi ∩ Vj = ∅, while Ui ∩ Un ⊆ Ti ∩Wi = ∅.

For (X, d) metric and S ⊆ X, define d(x, S) = inf{d(x, s) | s ∈ S}.

1. Prove that d(x, S) = 0 if and only if x ∈ S. (Chase proved this in the problem session.)

2. Prove that D : X → R defined by D(x) = d(x, S) is continuous.

Let x0 ∈ X. Given ε > 0, put δ = ε. Suppose that d(x0, x) < δ. We will
show that d(x, S) < d(x0, S) + ε and d(x, S) > d(x0, S) − ε, which implies that
|d(x, S)− d(x0, S)| < ε and completes the proof that D is continuous.



For every s ∈ S, d(x, s) ≤ d(x, x0) + d(x0, s), so d(x, S) − d(x, x0) ≤ d(x, s) −
d(x, x0) ≤ d(x0, s). That is, d(x, S) − d(x, x0) is a lower bound for the d(x0, s),
so d(x, S) − d(x, x0) ≤ d(x0, S), and therefore d(x, S) ≤ d(x0, S) + d(x, x0) <
d(x0, S) + ε.

On the other hand, for every x ∈ S, d(x0, s) ≤ d(x0, x) + d(x, s), so d(x, s) ≥
d(x0, s) − d(x, x0) ≥ d(x0, S) − d(x, x0). That is, d(x0, S) − d(x, x0) is a lower
bound for the d(x, s), so d(x, S) ≥ d(x0, S)− d(x, x0) > d(x0, S)− ε.

3. Suppose that (X, d) is a metric space and A, B are disjoint closed subsets.Show that
the function

f(x) =
d(x, A)− d(x, B)

d(x, A) + d(x, B)

is a continous real-valued function f : X → [−1, 1] with f−1(−1) = A and f−1(1) = B.

We have just seen that the functions d(x, A) and d(x, B) are continuous. The
denominator d(x, A) + d(x, B) is never 0, since if both d(x, A) and d(x, B) were
0, we would have x ∈ A ∩ B = A ∩ B = ∅. So f is a continuous real-valued
function on X. For any non-negative numbers α and β, not both 0, we have
α−β
α+β

≤ α+β
α+β

= 1. This also implies that β−α
α+β

≤ 1, so β−α
α+β

≥ −1. Therefore the

image of f lies in [−1, 1]. Finally, α−β
α+β

= 1 if and only if α−β = α+β if and only

if β = 0, so f(x) = 1 if and only if d(x, B) = 0, which means that x ∈ B = B.
Similarly, α−β

α+β
= −1 if and only if α − β = −α − β if and only if α = 0, so

f(x) = −1 if and only if d(x, A) = 0, which means that x ∈ A = A.


