Math 5853 homework solutions

36. A map f: X — Y is called an open map if it takes open sets to open sets, and is called
a closed map if it takes closed sets to closed sets. For example, a continuous bijection is a
homeomorphism if and only if it is a closed map and an open map.

1. Give examples of continuous maps from R to R that are open but not closed, closed
but not open, and neither open nor closed.

open but not closed: f(z) = e” is a homeomorphism onto its image (0, 00) (with
the logarithm function as its inverse). If U is open, then f(U) is open in (0, 00),
and since (0,00) is open in R, f(U) is open in R. Therefore f is open. However,
f(R) = (0, 00) is not closed, so f is not closed.

closed but not open: Constant functions are one example. We will give an example
that is also surjective. Let f(z) =0 for —1 <z <1, f(z) =2 — 1 for x > 1, and
f(z) =x+1for x < —1 (f is continuous by “gluing together on a finite collection
of closed sets”). f is not open, since (—1,1) is open but f((—1,1)) = {0} is not
open. To show that f is closed, let C' be any closed subset of R. For n € Z,
define I,, = [n,n +1]. Now, fY(I,) =[n+1,n+2)ifn>1, f~1(l) = [-1,2],
Y1) = [-2,1], and f7YI,) = [n— 1,n] if n < =2. Let W,, = f(C) N I,.
We have f'(W,)=CnNn,n+1]ifn>1, f1 (W) =Cn[-1,2], [F{(W,) =
CnNi2,1],and f7}(W,) =CnNn—1,n]if n < —2. In all cases, f~1(W,) is the
intersection of C' with a compact set, so f~1(W,,) is compact, and therefore W,, is
compact since W, is the image f(f~'(W,)) of the compact set f~!(W,,). Since R
is Hausdorff, W), is closed. Therefore f(C) = Uy _ W, is the union of a locally
finite collection of closed sets, so is closed.

neither open nor closed: Any function whose image is neither open nor closed
(such as f(z) = —t, whose image is (0,1]) takes R to a set which is neither
open nor closed, so gives an example. We will give an example that is also
surjective. Define f(x) = e” cos(z). This is not open, since f((—7/2,7/2)) is a
half-open interval. It is not closed, since the closure of the image of the closed set
{nm | n € Z} contains 0 (because ngmwf(nﬂ) = 0) but 0 is not in the image of

this set.

2. Prove that a continuous map from a compact space to a Hausdorff space must be
closed.

Let f: X — Y be continuous, where X is compact and Y is Hausdorff. Let C' be
closed in X. Then C is compact, hence f(C) is compact. Since Y is Hausdorff,
this implies that f(C) is closed.

3. Prove that a projection map from a product to one of its factors is open, but need not
be closed.



Let m;: [I;.; Xi — X, be the projection to the j* factor. It suffices to prove
that the image of a basis element is open, since if U = UB, is a union of basis
elements, then m;(U) = Um;(B,). But any basis element is of the form [, Uj,
with each U; open in X;, and m;(][;_, U;) = U;.

37. A map f: X — Y is called a local homeomorphism if for each x € X there exists a
neighborhood U such that f carries U homeomorphically to a neighborhood of f(z). Exam-
ples of local homeomorphisms are the map p: R — S! that sends t to (cos(2nt), sin(27t))
and the maps p,: S* — S! that send (cos(2wt), sin(27t)) to (cos(2wnt), sin(2mnt)).

1. Verify that any local homeomorphism is an open map.

Let f: X — Y be a local homeomorphism and let U be open in X. For each
x € U, choose an open neighborhood U, that is carried homeomorphically by f
to an open neighborhood f(U,) of f(z). Now, U N U, is open in U,, so is open
in f(U,). Since f is a homeomorphism on U,, f(U NU,) is open in f(U,), and
since f(U,) is open in Y, f(UNU,) is open in Y. So f(x) € f(UNU,) C f(U),
showing that f(U) is open.

2. Prove that the local homeomorphism p is not a closed map.

Let C = {n+1/(2n) | n € N}, a closed subset of R. We have f(n+ 1/(2n)) =
(cos(m/n),sin(m/n)). Since lim (cos(m/n),sin(w/n)) = (1,0), (1,0) is in the clo-

sure of f(C), but (1,0) ¢ f(C).

Prove that if zq,... x, are n distinct points in the Hausdorff space, then there are disjoint
open sets Uy, ..., U, with x; € U;.
In the problem session we found two good ways to prove this:

Saijuan’s proof: For each i # j, choose disjoint open sets U; ; and U;; with x; € U;;
and z; € Uj;. Put U; = Mg U i, an intersection of n — 1 open sets containing z;. For
i#7,U,NU; CU,;NU;,; =0.

induction proof: For n = 2, this is just the definition of Hausdorff. For n > 2 we
have by induction disjoint open sets Vi,..., V,_1 with z; € V; for ¢ < n — 1. For
1 < i < n —1, choose disjoint open sets T; and W; with z; € T; and z, € W;. Put
U =T,NnV,for: <n-—1,and U, = ﬂ?z_llVVi. Then U; is open and contains z; and if
i # j with 4,7 < n, we have U;NU; € V;NV; =0, while U; N U, C T, NW,; = 0.

For (X, d) metric and S C X, define d(z, S) = inf{d(z,s) | s € S}.
1. Prove that d(z,S) = 0 if and only if + € S. (Chase proved this in the problem session.)
2. Prove that D: X — R defined by D(z) = d(z,S) is continuous.

Let zg € X. Given € > 0, put § = e. Suppose that d(zg,z) < 6. We will
show that d(x,S) < d(z¢,5) + € and d(x,S) > d(zg, S) — €, which implies that
|d(z, S) — d(xg,S)| < € and completes the proof that D is continuous.



For every s € S, d(x,s) < d(z,x¢) + d(xo, s), so d(z,S) — d(z,z9) < d(x,s) —
d(z,z9) < d(zg,s). That is, d(x,S) — d(z,xq) is a lower bound for the d(zy, s),
so d(x,S) — d(z,z9) < d(xo,S), and therefore d(z,S) < d(xo,S) + d(z,z9) <
d(l’g, S) + €.

On the other hand, for every x € S, d(zg,s) < d(xg,z) + d(z,s), so d(x,s) >
d(xg,s) — d(x,x0) > d(xg,S) — d(x,x0). That is, d(xo,S) — d(x,z0) is a lower
bound for the d(z, s), so d(z,S) > d(zo, S) — d(z,x¢) > d(z¢,S) — €.

3. Suppose that (X, d) is a metric space and A, B are disjoint closed subsets.Show that
the function
(z, d(z, B)

d(x, A) — B
Jw) = d(z, A) + d(z, B)
is a continous real-valued function f: X — [—1,1] with f~'(—=1) = Aand f~'(1) = B.

We have just seen that the functions d(x, A) and d(x, B) are continuous. The
denominator d(x, A) + d(x, B) is never 0, since if both d(z, A) and d(z, B) were

0, we would have x € ANB = ANB = 0. So f is a continuous real-valued
function on X. For any non-negative numbers a and (3, not both 0, we have

3—j£ < % = 1. This also implies that g;Jrg <1, so ffTZ > —1. Therefore the

image of f lies in [—1,1]. Finally, 3—;2 = 1if and only if @ — 8 = a+ 3 if and only
if 3 =0,so f(x) = 1if and only if d(x, B) = 0, which means that z € B = B.
Similarly, 3—;2 = —1if and only if « — f = —a — § if and only if o = 0, so

f(z) = —1if and only if d(z, A) = 0, which means that z € A = A.



