Math 5853 homework solutions

- 53. Let (X, d) be a metric space. Define $\overline{d} \colon X \times X \to \mathbb{R}$ by $\overline{d}(x, y) = d(x, y)$ when $d(x, y) \leq 1$ and $\overline{d}(x, y) = 1$ when $d(x, y) \geq 1$.
 - 1. Prove that \overline{d} is a metric on X.

First, we have $\overline{d}(x,y) = 0$ if and only if d(x,y) = 0 if and only if x = y. For symmetry, if d(x,y) < 1 then $\overline{d}(x,y) = d(x,y) = d(y,x) = \overline{d}(y,x)$, while if $d(x,y) \ge 1$, then $d(y,x) \ge 1$ and $\overline{d}(x,y) = 1 = \overline{d}(y,x)$. For the triangle inequality, suppose first that d(x,y) and d(y,z) are both less than 1. Then $\overline{d}(x,y) \le d(x,y) \le d(x,z) + d(z,y) = \overline{d}(x,z) + \overline{d}(z,y)$. Now, suppose that one of d(x,y) or d(y,z) is at least 1. Then at least one of $\overline{d}(x,z)$ or $\overline{d}(z,y)$ equals 1, so $\overline{d}(x,y) \le 1 \le \overline{d}(x,z) + \overline{d}(z,y)$.

2. Observe that $B_{\overline{d}}(x,\epsilon) = B_d(x,\epsilon)$ when $\epsilon \leq 1$ and $B_{\overline{d}}(x,\epsilon) = X$ when $\epsilon > 1$.

Suppose first that $\epsilon \leq 1$. Then $y \in B_d(x, \epsilon)$ if and only if $d(x, y) < \epsilon$ if and only if $\overline{d}(x, y) < \epsilon$ if and only if $y \in B_{\overline{d}}(x, \epsilon)$. Now, suppose that $\epsilon > 1$. Then for all $y \in X$, $\overline{d}(x, y) \leq 1 < \epsilon$ so $y \in B_{\overline{d}}(x, \epsilon)$; that is, $B_{\overline{d}}(x, \epsilon) = X$.

3. Prove that the metric topology on X for d equals the metric topology on X for d. Hint: use the Basis Recognition Theorem to prove that $\{B_{\overline{d}}(x,\epsilon)\}$ is a basis for the topology on (X, d).

By part 2, the $B_{\overline{d}}(x,\epsilon)$ are open sets in the *d*-metric topology. Now, suppose that $x \in X$ and that U is any open neighborhood of x for the *d*-metric topology. Then for some ϵ , $B_d(x,\epsilon) \subseteq U$. If $\epsilon \leq 1$, then $x \in B_{\overline{d}}(x,\epsilon) =$ $B_d(x,\epsilon) \subseteq U$. If $\epsilon > 1$, then $x \in B_{\overline{d}}(x,1/2) = B_d(x,1/2) \subseteq B_d(x,\epsilon) \subseteq U$. By the Basis Recognition Theorem, $\{B_{\overline{d}}(x,\epsilon)\}$ is a basis for the *d*-metric topology on X. Since by definition it is a basis for the \overline{d} -metric topology, we conclude that the \overline{d} -metric topology equals the *d*-metric topology.

54. Let $\prod_{\alpha \in \mathcal{A}} X_{\alpha}$ be a product of spaces, and let x_n be a sequence of points in $\prod_{\alpha \in \mathcal{A}} X_{\alpha}$. Prove that x_n converges to x_0 if and only if $\pi_{\alpha}(x_n)$ converges to $\pi_{\alpha}(x_0)$ in X_{α} for every α in \mathcal{A} .

Suppose first that $x_n \to x_0$ in $\prod_{\alpha \in \mathcal{A}} X_\alpha$. Since each π_α is continuous, and continuous functions preserve convergence of sequences, each $\pi_\alpha(x_n) \to \pi_\alpha(x_0)$. Conversely, assume that $\pi_\alpha(x_n) \to \pi_\alpha(x_0)$ in X_α for every α in \mathcal{A} . Let $\bigcap_{i=1}^k \pi_{\alpha_i}^{-1}(U_{\alpha_i})$ be any basic open neighborhood of x_0 . For each i with $1 \leq i \leq k$, $\pi_{\alpha_i}(x_n) \to \pi_{\alpha_i}(x_0)$ in X_{α_i} , so there exists N_i such that if $n > N_i$, then $\pi_{\alpha_i}(x_n) \in U_{\alpha_i}$. So for $n > \max_{1 \leq i \leq k} \{N_i\}, x_n \in \bigcap_{i=1}^k \pi_{\alpha_i}^{-1}(U_{\alpha_i})$. Therefore $x_n \to x_0$.

- 55. Let $X = \prod_{\alpha \in \mathcal{A}} \mathbb{R}$, where \mathcal{A} is an uncountable set. Let 0 be the point with all coordinates
 - 0, and let $A = \{(x_{\alpha}) \in \prod_{\alpha \in \mathcal{A}} \mathbb{R} \mid x_{\alpha} \in \{0, 1\} \text{ and } x_{\alpha} = 1 \text{ for all but finitely many } \alpha\}.$
 - 1. Prove that 0 is in \overline{A} .

Let $\bigcap_{i=1}^{k} \pi_{\alpha_{i}}^{-1}(U_{\alpha_{i}})$ be any basic open neighborhood of 0. Let a be the point in $\prod_{\alpha \in \mathcal{A}} \mathbb{R}$ defined by $\pi_{\alpha_{i}}(a) = 0$ for $1 \leq i \leq k$, and $\pi_{alpha_{i}}(a) = 1$ for $\alpha \notin \{\alpha_{1}, \ldots, \alpha_{k}\}$. Then $a \in A$, since only finitely many of the $\pi_{\alpha}(a)$ are 0, so $a \in A \cap (\bigcap_{i=1}^{k} \pi_{\alpha_{i}}^{-1}(U_{\alpha_{i}}))$. Therefore $0 \in \overline{A}$.

2. Prove that there is no sequence of points of A that converges to 0.

Suppose that a_n is a sequence of points of A with $a_n \to 0$. For each n, define C_n to be the set of α such that $\pi_{\alpha}(a_n) = 0$. Each C_n is finite, so $\bigcup_{n=1}^{\infty} C_n$ is countable, so there exists $\alpha \in \mathcal{A} - \bigcup_{n=1}^{\infty} C_n$. For this α , each $\pi_{\alpha}(a_n) = 1$, so $\pi_{\alpha}(a_n) \to 1$, contradicting the fact that $a_n \to 0$ and therefore $\pi_{\alpha}(a_n) \to \pi_{\alpha}(0) = 0$.

3. Deduce that X is not metrizable.

For a metrizable space, we proved that $x \in \overline{S}$ if and only if there exists a sequence of points of S converging to x. So if $\prod_{\alpha \in \mathcal{A}} \mathbb{R}$ were metrizable, there would have to be a sequence of points of A converging to 0.

56. Prove that a product of path-connected spaces is path-connected. Hint: Use the Fundamental Theorem for Products.

Let X_{α} , $\alpha \in \mathcal{A}$ be a collection of path-connected spaces, and let $x, y \in \prod_{\alpha \in \mathcal{A}} X_{\alpha}$. For each α , choose a path $\gamma_{\alpha} \colon I \to X_{\alpha}$ with $\gamma_{\alpha}(0) = \pi_{\alpha}(x)$ and $\gamma_{\alpha}(1) = \pi_{\alpha}(y)$. Define $\gamma \colon I \to \prod_{\alpha \in \mathcal{A}} X_{\alpha}$ by $\pi_{\alpha} \circ \gamma = \gamma_{\alpha}$ for all α . Since each $\pi_{\alpha} \circ \gamma$ is continuous, γ is continuous. We have $\pi_{\alpha} \circ \gamma(0) = \pi_{\alpha}(x)$ for all α , so $\gamma(0) = x$, and similarly $\gamma(1) = y$. So we have shown that $\prod_{\alpha \in \mathcal{A}} X_{\alpha}$ is path-connected.