
Math 5853 homework solutions

53. Let (X, d) be a metric space. Define d : X × X → R by d(x, y) = d(x, y) when
d(x, y) ≤ 1 and d(x, y) = 1 when d(x, y) ≥ 1.

1. Prove that d is a metric on X.

First, we have d(x, y) = 0 if and only if d(x, y) = 0 if and only if x = y.
For symmetry, if d(x, y) < 1 then d(x, y) = d(x, y) = d(y, x) = d(y, x), while
if d(x, y) ≥ 1, then d(y, x) ≥ 1 and d(x, y) = 1 = d(y, x). For the triangle
inequality, suppose first that d(x, y) and d(y, z) are both less than 1. Then
d(x, y) ≤ d(x, y) ≤ d(x, z) + d(z, y) = d(x, z) + d(z, y). Now, suppose that
one of d(x, y) or d(y, z) is at least 1. Then at least one of d(x, z) or d(z, y)
equals 1, so d(x, y) ≤ 1 ≤ d(x, z) + d(z, y).

2. Observe that Bd(x, ε) = Bd(x, ε) when ε ≤ 1 and Bd(x, ε) = X when ε > 1.

Suppose first that ε ≤ 1. Then y ∈ Bd(x, ε) if and only if d(x, y) < ε if and
only if d(x, y) < ε if and only if y ∈ Bd(x, ε). Now, suppose that ε > 1. Then
for all y ∈ X, d(x, y) ≤ 1 < ε so y ∈ Bd(x, ε); that is, Bd(x, ε) = X.

3. Prove that the metric topology on X for d equals the metric topology on X for
d. Hint: use the Basis Recognition Theorem to prove that {Bd(x, ε)} is a basis
for the topology on (X, d).

By part 2, the Bd(x, ε) are open sets in the d-metric topology. Now, suppose
that x ∈ X and that U is any open neighborhood of x for the d-metric
topology. Then for some ε, Bd(x, ε) ⊆ U . If ε ≤ 1, then x ∈ Bd(x, ε) =
Bd(x, ε) ⊆ U . If ε > 1, then x ∈ Bd(x, 1/2) = Bd(x, 1/2) ⊆ Bd(x, ε) ⊆ U . By
the Basis Recognition Theorem, {Bd(x, ε)} is a basis for the d-metric topology
on X. Since by definition it is a basis for the d-metric topology, we conclude
that the d-metric topology equals the d-metric topology.

54. Let
∏
α∈A

Xα be a product of spaces, and let xn be a sequence of points in
∏
α∈A

Xα. Prove

that xn converges to x0 if and only if πα(xn) converges to πα(x0) in Xα for every α in
A.

Suppose first that xn → x0 in
∏
α∈A

Xα. Since each πα is continuous, and continuous

functions preserve convergence of sequences, each πα(xn) → πα(x0). Conversely,
assume that πα(xn) → πα(x0) in Xα for every α in A. Let ∩k

i=1π
−1
αi

(Uαi
) be any

basic open neighborhood of x0. For each i with 1 ≤ i ≤ k, παi
(xn) → παi

(x0)
in Xαi

, so there exists Ni such that if n > Ni, then παi
(xn) ∈ Uαi

. So for
n > max1≤i≤k{Ni}, xn ∈ ∩k

i=1π
−1
αi

(Uαi
). Therefore xn → x0.



55. Let X =
∏
α∈A

R, where A is an uncountable set. Let 0 be the point with all coordinates

0, and let A = {(xα) ∈
∏
α∈A

R | xα ∈ {0, 1} and xα = 1 for all but finitely many α}.

1. Prove that 0 is in A.

Let ∩k
i=1π

−1
αi

(Uαi
) be any basic open neighborhood of 0. Let a be the point

in
∏
α∈A

R defined by παi
(a) = 0 for 1 ≤ i ≤ k, and πalphai

(a) = 1 for α /∈

{α1, . . . , αk}. Then a ∈ A, since only finitely many of the πα(a) are 0, so
a ∈ A ∩ (∩k

i=1π
−1
αi

(Uαi
)). Therefore 0 ∈ A.

2. Prove that there is no sequence of points of A that converges to 0.

Suppose that an is a sequence of points of A with an → 0. For each n,
define Cn to be the set of α such that πα(an) = 0. Each Cn is finite, so
∪∞n=1Cn is countable, so there exists α ∈ A − ∪∞n=1Cn. For this α, each
πα(an) = 1, so πα(an) → 1, contradicting the fact that an → 0 and therefore
πα(an) → πα(0) = 0.

3. Deduce that X is not metrizable.

For a metrizable space, we proved that x ∈ S if and only if there exists a

sequence of points of S converging to x. So if
∏
α∈A

R were metrizable, there

would have to be a sequence of points of A converging to 0.

56. Prove that a product of path-connected spaces is path-connected. Hint: Use the
Fundamental Theorem for Products.

Let Xα, α ∈ A be a collection of path-connected spaces, and let x, y ∈
∏
α∈A

Xα.

For each α, choose a path γα : I → Xα with γα(0) = πα(x) and γα(1) = πα(y).

Define γ : I →
∏
α∈A

Xα by πα ◦ γ = γα for all α. Since each πα ◦ γ is continuous,

γ is continuous. We have πα ◦ γ(0) = πα(x) for all α, so γ(0) = x, and similarly

γ(1) = y. So we have shown that
∏
α∈A

Xα is path-connected.


