Math 5853 homework solutions

57. Let A be a closed subset of a normal space X. Let $f: A \to \prod_{\alpha \in \mathcal{A}} X_{\alpha}$ be continuous, where each X_{α} is homeomorphic either to \mathbb{R} or to a closed interval in \mathbb{R} . Prove that fextends to X.

> For each α , the Tietze Extension Theorem gives an extension of $\pi_{\alpha} \circ f \colon A \to X_{\alpha}$ to $F_{\alpha} \colon X \to X_{\alpha}$. Define $F \colon X \to \prod_{\alpha \in \mathcal{A}} X_{\alpha}$ by $\pi_{\alpha} \circ F = F_{\alpha}$. By the Fundamental Theorem on Products, F is continuous, and for each $a \in A$, $\pi_{\alpha}(F(a)) = F_{\alpha}(a) = \pi_{\alpha}(f(a))$ for all α , so F(a) = f(a).

58. Suppose X is a normal space containing an infinite discrete closed subset $A \subset X$. Prove that there exists a continuous unbounded function from X to \mathbb{R} . Deduce that in a compact space, every infinite subset has a limit point in the space. Hint: If A is an infinite subset that has no limit point in X, then A contains a countably infinite subset $A_0 = \{a_1, a_2, \ldots\}$ that has no limit point. Such a subset must be a discrete, so $f: A_0 \to \mathbb{R}$ defined by $f(a_n)$ is continuous, and A_0 must be closed.

Choose a countable subset $A_0 \subseteq A$, say $A_0 = \{a_1, a_2, \ldots\}$. Since A has the discrete topology, so does A_0 , so the function $f: A_0 \to \mathbb{R}$ defined by $f(a_n) = n$ is continuous. Also, since A has the discrete topology, A_0 is closed in A and therefore closed in X. So the Tietze Extension Theorem applies to show that there is an extension $F: X \to \mathbb{R}$ of f. Since f is unbounded, so is F.

Now, let X be compact and suppose for contradiction that X contains an infinite subset B that has no limit point in X. Since $B' = \emptyset$, we have $B = B \cup B' = \overline{B}$, so B is closed in X. Moreover, every $b \in B$ has a neighborhood U in X such that $U \cap B = \{b\}$, othersise b would be a limit point of B, so B is a discrete subset of X. By the previous argument, this implies that X has an unbounded continuous function, a contradiction to the compactness of X.

Jana pointed out that a contradiction can be reached more easily in the second part without depending on the Tietze Extension Theorem: Since B is a closed subset of X, it is also compact, but a compact discrete space must be finite.

- 59. Let $F_n: X \to \mathbb{R}$ be a sequence of functions. Suppose that there are a number C > 0and a number $r \in (0, 1)$ such that $|F_{n+1}(x) - F_n(x)| \leq Cr^n$ for all x in X.
 - 1. Tell why $\lim_{n\to\infty} F_n(x)$ exists for each $x \in X$. Hint: observe that the series $\sum_{k=1}^{\infty} F_{k+1}(x) F_k(x)$ is absolutely convergent.

For each x, the series $\sum_{n=1}^{\infty} F_{n+1}(x) - F_n(x)$ converges absolutely by com-

parison with the geometric series $\sum_{n=1}^{\infty} Cr^n$, so its sequence of partial sums

 $s_n = F_{n+1}(x) - F_1(x)$ also converges. But $F_1(x)$ is fixed, so this implies that the sequence $F_n(x)$ converges.

2. Define $F: X \to \mathbb{R}$ by $F(x) = \lim_{n \to \infty} F_n(x)$. Prove that the sequence F_n converges uniformly to F (that is, for every $\epsilon > 0$ there exists N such that $|F_n(x) - F(x)| < \epsilon$ for all $n \ge N$ and for all $x \in X$).

Given
$$\epsilon > 0$$
, choose N so that $\frac{Cr^N}{1-r} < \epsilon$. For each x, if $n \ge N$ then
 $|F(x)-F_n(x)| = |\lim_{m\to\infty} |F_m(x)-F_n(x)| = |\sum_{k=n}^{\infty} F_{k+1}(x)-F_k(x)| \le |\sum_{k=n}^{\infty} Cr^k| = \frac{Cr^n}{1-r} < \epsilon$, so F_n converges uniformly to F.

3. Prove that if $g_n: X \to \mathbb{R}$ is a sequence of continuous functions that converges uniformly to a function $g: X \to \mathbb{R}$, then g is also continuous.

Given $\epsilon > 0$, choose N so that if $n \ge N$, then $|g(x) - g_n(x)| < \epsilon/3$ for all $x \in X$. Fix $x_0 \in X$, and choose an open neighborhood U of x so that if $x \in U$, then $|g_N(x) - g_N(x_0)| < \epsilon/3$, which is possible since g_N is continuous (and hence $g_N^{-1}(B(g(x_0), \epsilon/3))$ is open). For any $x \in U$, we have $|g(x) - g(x_0)| \le |g(x) - g_N(x)| + |g_N(x) - g_N(x_0)| + |g_N(x_0) - g(x_0)| \le 3(\epsilon/3) = \epsilon$, establishing the continuity of g.

60. Let A be a closed subset of a normal space X, and let $f: A \to [a, b]$ be continuous. Suppose that f extends to a continuous map $G: X \to \mathbb{R}$. Prove that f extends to a continuous map $F: X \to [a, b]$. Hint: Construct a continuous map $R: \mathbb{R} \to [a, b]$ that extends the identity on [a, b], and put $F = R \circ G$.

Let $i: [a, b] \to \mathbb{R}$ be the inclusion function. Define $R: \mathbb{R} \to [a, b]$ by R(x) = b if $x \leq b$, R(x) = x if $a \leq x \leq b$, and R(x) = b if $b \leq x$. This R is continuous (since its restriction to each of the sets in the finite closed cover $\{(-\infty,], [a, b], [b, \infty)\}$ of \mathbb{R} is continuous), and for $x \in [a, b]$ we have $R \circ i(x) = R(x) = x$, so $R \circ i = id_A$. For the extension $G: X \to \mathbb{R}$ of f, we have on A that $G = i \circ f$, so $R \circ G = R \circ i \circ f = id_A \circ f = f$, that is, $R \circ G: X \to [a, b]$ is an extension of f as a map into [a, b].

This last argument is the final part of the proof of the Tietze Extension Theorem; once one has proven that maps from A to \mathbb{R} extend to X, this argument shows that maps from A to [a, b] extend to X.