Math 5853 homework solutions

57. Let A be a closed subset of a normal space X. Let $f: A \rightarrow \prod_{\alpha \in \mathcal{A}} X_{\alpha}$ be continuous, where each X_{α} is homeomorphic either to \mathbb{R} or to a closed interval in \mathbb{R}. Prove that f extends to X.

For each α, the Tietze Extension Theorem gives an extension of $\pi_{\alpha} \circ f: A \rightarrow X_{\alpha}$ to $F_{\alpha}: X \rightarrow X_{\alpha}$. Define $F: X \rightarrow \prod_{\alpha \in \mathcal{A}} X_{\alpha}$ by $\pi_{\alpha} \circ F=F_{\alpha}$. By the Fundamental Theorem on Products, F is continuous, and for each $a \in A, \pi_{\alpha}(F(a))=F_{\alpha}(a)=$ $\pi_{\alpha}(f(a))$ for all α, so $F(a)=f(a)$.
58. Suppose X is a normal space containing an infinite discrete closed subset $A \subset X$. Prove that there exists a continuous unbounded function from X to \mathbb{R}. Deduce that in a compact space, every infinite subset has a limit point in the space. Hint: If A is an infinite subset that has no limit point in X, then A contains a countably infinite subset $A_{0}=\left\{a_{1}, a_{2}, \ldots\right\}$ that has no limit point. Such a subset must be a discrete, so $f: A_{0} \rightarrow \mathbb{R}$ defined by $f\left(a_{n}\right)$ is continuous, and A_{0} must be closed.

Choose a countable subset $A_{0} \subseteq A$, say $A_{0}=\left\{a_{1}, a_{2}, \ldots\right\}$. Since A has the discrete topology, so does A_{0}, so the function $f: A_{0} \rightarrow \mathbb{R}$ defined by $f\left(a_{n}\right)=n$ is continuous. Also, since A has the discrete topology, A_{0} is closed in A and therefore closed in X. So the Tietze Extension Theorem applies to show that there is an extension $F: X \rightarrow \mathbb{R}$ of f. Since f is unbounded, so is F.
Now, let X be compact and suppose for contradiction that X contains an infinite subset B that has no limit point in X. Since $B^{\prime}=\emptyset$, we have $B=B \cup B^{\prime}=\bar{B}$, so B is closed in X. Moreover, every $b \in B$ has a neighborhood U in X such that $U \cap B=\{b\}$, othersise b would be a limit point of B, so B is a discrete subset of X. By the previous argument, this implies that X has an unbounded continuous function, a contradiction to the compactness of X.
Jana pointed out that a contradiction can be reached more easily in the second part without depending on the Tietze Extension Theorem: Since B is a closed subset of X, it is also compact, but a compact discrete space must be finite.
59. Let $F_{n}: X \rightarrow \mathbb{R}$ be a sequence of functions. Suppose that there are a number $C>0$ and a number $r \in(0,1)$ such that $\left|F_{n+1}(x)-F_{n}(x)\right| \leq C r^{n}$ for all x in X.

1. Tell why $\lim _{n \rightarrow \infty} F_{n}(x)$ exists for each $x \in X$. Hint: observe that the series $\sum_{k=1}^{\infty} F_{k+1}(x)-F_{k}(x)$ is absolutely convergent.

For each x, the series $\sum_{n=1}^{\infty} F_{n+1}(x)-F_{n}(x)$ converges absolutely by comparison with the geometric series $\sum_{n=1}^{\infty} C r^{n}$, so its sequence of partial sums
$s_{n}=F_{n+1}(x)-F_{1}(x)$ also converges. But $F_{1}(x)$ is fixed, so this implies that the sequence $F_{n}(x)$ converges.
2. Define $F: X \rightarrow \mathbb{R}$ by $F(x)=\lim _{n \rightarrow \infty} F_{n}(x)$. Prove that the sequence F_{n} converges uniformly to F (that is, for every $\epsilon>0$ there exists N such that $\left|F_{n}(x)-F(x)\right|<\epsilon$ for all $n \geq N$ and for all $x \in X$).

Given $\epsilon>0$, choose N so that $\frac{C r^{N}}{1-r}<\epsilon$. For each x, if $n \geq N$ then $\left|F(x)-F_{n}(x)\right|=\left|\lim _{m \rightarrow \infty} F_{m}(x)-F_{n}(x)\right|=\left|\sum_{k=n}^{\infty} F_{k+1}(x)-F_{k}(x)\right| \leq\left|\sum_{k=n}^{\infty} C r^{k}\right|=$ $\frac{C r^{n}}{1-r}<\epsilon$, so F_{n} converges uniformly to F.
3. Prove that if $g_{n}: X \rightarrow \mathbb{R}$ is a sequence of continuous functions that converges uniformly to a function $g: X \rightarrow \mathbb{R}$, then g is also continuous.

Given $\epsilon>0$, choose N so that if $n \geq N$, then $\left|g(x)-g_{n}(x)\right|<\epsilon / 3$ for all $x \in X$. Fix $x_{0} \in X$, and choose an open neighborhood U of x so that if $x \in U$, then $\left|g_{N}(x)-g_{N}\left(x_{0}\right)\right|<\epsilon / 3$, which is possible since g_{N} is continuous (and hence $g_{N}^{-1}\left(B\left(g\left(x_{0}\right), \epsilon / 3\right)\right.$ is open). For any $x \in U$, we have $\left|g(x)-g\left(x_{0}\right)\right| \leq$ $\left|g(x)-g_{N}(x)\right|+\left|g_{N}(x)-g_{N}\left(x_{0}\right)\right|+\left|g_{N}\left(x_{0}\right)-g\left(x_{0}\right)\right| \leq 3(\epsilon / 3)=\epsilon$, establishing the continuity of g.
60. Let A be a closed subset of a normal space X, and let $f: A \rightarrow[a, b]$ be continuous. Suppose that f extends to a continuous map $G: X \rightarrow \mathbb{R}$. Prove that f extends to a continuous map $F: X \rightarrow[a, b]$. Hint: Construct a continuous map $R: \mathbb{R} \rightarrow[a, b]$ that extends the identity on $[a, b]$, and put $F=R \circ G$.

Let $i:[a, b] \rightarrow \mathbb{R}$ be the inclusion function. Define $R: \mathbb{R} \rightarrow[a, b]$ by $R(x)=b$ if $x \leq b, R(x)=x$ if $a \leq x \leq b$, and $R(x)=b$ if $b \leq x$. This R is continuous (since its restriction to each of the sets in the finite closed cover $\{(-\infty],,[a, b],[b, \infty)\}$ of \mathbb{R} is continuous), and for $x \in[a, b]$ we have $R \circ i(x)=R(x)=x$, so $R \circ i=i d_{A}$. For the extension $G: X \rightarrow \mathbb{R}$ of f, we have on A that $G=i \circ f$, so $R \circ G=$ $R \circ i \circ f=i d_{A} \circ f=f$, that is, $R \circ G: X \rightarrow[a, b]$ is an extension of f as a map into $[a, b]$.

This last argument is the final part of the proof of the Tietze Extension Theorem; once one has proven that maps from A to \mathbb{R} extend to X, this argument shows that maps from A to $[a, b]$ extend to X.

