
Math 5853 homework solutions

57. Let A be a closed subset of a normal space X. Let f : A →
∏

α∈AXα be continuous,
where each Xα is homeomorphic either to R or to a closed interval in R. Prove that f
extends to X.

For each α, the Tietze Extension Theorem gives an extension of πα ◦ f : A → Xα

to Fα : X → Xα. Define F : X →
∏

α∈AXα by πα ◦F = Fα. By the Fundamental
Theorem on Products, F is continuous, and for each a ∈ A, πα(F (a)) = Fα(a) =
πα(f(a)) for all α, so F (a) = f(a).

58. Suppose X is a normal space containing an infinite discrete closed subset A ⊂ X.
Prove that there exists a continuous unbounded function from X to R. Deduce that
in a compact space, every infinite subset has a limit point in the space. Hint: If A is
an infinite subset that has no limit point in X, then A contains a countably infinite
subset A0 = {a1, a2, . . .} that has no limit point. Such a subset must be a discrete, so
f : A0 → R defined by f(an) is continuous, and A0 must be closed.

Choose a countable subset A0 ⊆ A, say A0 = {a1, a2, . . .}. Since A has the
discrete topology, so does A0, so the function f : A0 → R defined by f(an) = n
is continuous. Also, since A has the discrete topology, A0 is closed in A and
therefore closed in X. So the Tietze Extension Theorem applies to show that
there is an extension F : X → R of f . Since f is unbounded, so is F .

Now, let X be compact and suppose for contradiction that X contains an infinite
subset B that has no limit point in X. Since B′ = ∅, we have B = B ∪ B′ = B,
so B is closed in X. Moreover, every b ∈ B has a neighborhood U in X such that
U ∩B = {b}, othersise b would be a limit point of B, so B is a discrete subset of
X. By the previous argument, this implies that X has an unbounded continuous
function, a contradiction to the compactness of X.

Jana pointed out that a contradiction can be reached more easily in the second
part without depending on the Tietze Extension Theorem: Since B is a closed
subset of X, it is also compact, but a compact discrete space must be finite.

59. Let Fn : X → R be a sequence of functions. Suppose that there are a number C > 0
and a number r ∈ (0, 1) such that |Fn+1(x)− Fn(x)| ≤ Crn for all x in X.

1. Tell why limn→∞ Fn(x) exists for each x ∈ X. Hint: observe that the series
∞∑

k=1

Fk+1(x)− Fk(x) is absolutely convergent.

For each x, the series
∞∑

n=1

Fn+1(x) − Fn(x) converges absolutely by com-

parison with the geometric series
∞∑

n=1

Crn, so its sequence of partial sums



sn = Fn+1(x)− F1(x) also converges. But F1(x) is fixed, so this implies that
the sequence Fn(x) converges.

2. Define F : X → R by F (x) = limn→∞ Fn(x). Prove that the sequence Fn converges
uniformly to F (that is, for every ε > 0 there exists N such that |Fn(x)−F (x)| < ε
for all n ≥ N and for all x ∈ X).

Given ε > 0, choose N so that
CrN

1− r
< ε. For each x, if n ≥ N then

|F (x)−Fn(x)| = | lim
m→∞

Fm(x)−Fn(x)| = |
∞∑

k=n

Fk+1(x)−Fk(x)| ≤ |
∞∑

k=n

Crk| =

Crn

1− r
< ε, so Fn converges uniformly to F .

3. Prove that if gn : X → R is a sequence of continuous functions that converges
uniformly to a function g : X → R, then g is also continuous.

Given ε > 0, choose N so that if n ≥ N , then |g(x) − gn(x)| < ε/3 for all
x ∈ X. Fix x0 ∈ X, and choose an open neighborhood U of x so that if x ∈ U ,
then |gN(x) − gN(x0)| < ε/3, which is possible since gN is continuous (and
hence g−1

N (B(g(x0), ε/3) is open). For any x ∈ U , we have |g(x) − g(x0)| ≤
|g(x)−gN(x)|+ |gN(x)−gN(x0)|+ |gN(x0)−g(x0)| ≤ 3(ε/3) = ε, establishing
the continuity of g.

60. Let A be a closed subset of a normal space X, and let f : A → [a, b] be continuous.
Suppose that f extends to a continuous map G : X → R. Prove that f extends to a
continuous map F : X → [a, b]. Hint: Construct a continuous map R : R → [a, b] that
extends the identity on [a, b], and put F = R ◦G.

Let i : [a, b] → R be the inclusion function. Define R : R → [a, b] by R(x) = b if
x ≤ b, R(x) = x if a ≤ x ≤ b, and R(x) = b if b ≤ x. This R is continuous (since
its restriction to each of the sets in the finite closed cover {(−∞, ], [a, b], [b,∞)}
of R is continuous), and for x ∈ [a, b] we have R ◦ i(x) = R(x) = x, so R ◦ i = idA.
For the extension G : X → R of f , we have on A that G = i ◦ f , so R ◦ G =
R ◦ i ◦ f = idA ◦ f = f , that is, R ◦ G : X → [a, b] is an extension of f as a map
into [a, b].

This last argument is the final part of the proof of the Tietze Extension Theorem; once one
has proven that maps from A to R extend to X, this argument shows that maps from A to
[a, b] extend to X.


