Math 5853 homework solutions

61. Let X be the quotient space obtained from S^1 by identifying all points in the lower half of S^1 to a single point. Prove that X is homeomorphic to S^1 . Hint: consider the map $S^1 \to S^1$ that takes $e^{2\pi i t}$ to $e^{4\pi i t}$ for $0 \le t \le 1/2$ and takes $e^{2\pi i t}$ to 1 for $1/2 \le t \le 1$.

Define $f: S^1 \to S^1$ by sending $e^{2\pi i t}$ to $e^{4\pi i t}$ for $0 \leq t \leq 1/2$ and $e^{2\pi i t}$ to 1 for $1/2 \leq t \leq 1$. To see that f is continuous, let $C_+ = \{(x, y) \in S^1 \mid y \geq 0\}$ and $C_- = \{(x, y) \in S^1 \mid y \leq 0\}$. On C_+ , f is the restriction of the complex function $z \mapsto z^2$, so is continuous, and on C_- , f is constant. By gluing on a (locally) finite cover by closed sets, f is continuous. It is surjective, indeed it carries C_+ onto S^1 . By inspection, f induces a bijective function $\overline{f}: X \to S^1$, and by the universal property of quotient maps, \overline{f} is continuous since f is. Since X is compact (because it is a continuous image of the compact space S^1) and S^1 is Hausdorff, \overline{f} is a homeomorphism.

62. Let X be the quotient space obtained from S^2 by identifying two points whenever they have the same z-coordinate (where as usual, S^2 is regarded as a subset of \mathbb{R}^3). Prove that the quotient space is homeomorphic to [-1, 1].

Define $f: S^2 \to [-1, 1]$ by f(x, y, z) = z. It is continuous since it is the restriction of a coordinate projection function of \mathbb{R}^3 . It is surjective since given $z \in [-1, 1]$, $z = f(0, \sqrt{1-z^2}, z)$. By inspection, f induces a bijective function $\overline{f}: X \to [-1, 1]$, and by the universal property of quotient maps, \overline{f} is continuous since fis. Since X is compact (because it is a continuous image of the compact space S^2) and [-1, 1] is Hausdorff, \overline{f} is a homeomorphism.

- 63. Define the cone on X, C(X), to be the quotient space obtained by identifying the subspace $X \times \{1\}$ of $X \times I$ to a point.
 - 1. The *n*-ball D^n is defined to be $\{(x_1, \ldots, x_n) \in \mathbb{R}^n \mid \sum_{i=1}^n x_i^2 = 1\}$. Prove that $C(S^n)$ is homeomorphic to D^{n+1} . Hint: define $f: C(S^n) \to D^{n+1}$ by f([(x,t)]) = (1-t)x.

Define $g: S^n \times I \to D^{n+1}$ by g(x,t) = (1-t)x. It is continuous since it is a composition of projection functions and vector space operations in \mathbb{R}^{n+1} . It is surjective since given $v \in D^{n+1}$, either v = 0, in which case v = g(x,1)for any x, or $v \neq 0$, in which case $v = g(\frac{v}{\|v\|}, 1 - \|v\|)$. By inspection, ginduces a bijective function $\overline{g}: C(S^n) \to D^{n+1}$, and by the universal property of quotient maps, \overline{g} is continuous since g is. Since $C(S^n)$ is compact (because it is a continuous image of the compact space S^n) and D^{n+1} is Hausdorff, \overline{g} is a homeomorphism. 2. Prove that C(X) is path-connected. Deduce that any X is a subspace of a path-connected space.

Let $([x_0, t_0]) \in C(X)$. Define a path $\alpha \colon I \to X \times I$ by $\alpha(t) = (x_0, t_0 + t(1-t_0))$. It is continuous since its coordinate functions are continuous. Let $p \colon X \times I \to C(X)$ be the quotient map. Then, $p \circ \alpha$ is a path in C(X) from $[(x_0, t_0)]$ to $([x_0, 1])$. Thus every point in C(X) is in the same path component as the cone point $[(x_0, 1)]$ (for any other $y_0 \in X$, $[(y_0, 1)] = [(x_0, 1)]$), so C(X) is path-connected.

To deduce that any X imbeds in a path-connected space, it is sufficient to show that X imbeds into C(X). Define $j: X \to X \times I$ by j(x) = (x, 0). It is continuous since its coordinate functions are continuous, so $p \circ j: X \to C(X)$ is continuous. Also, $p \circ j$ is injective, since [(x, 0)] = [(y, 0)] if and only if x = y. To see that $p \circ j$ is an imbedding, it remains to show that it takes open sets in X to open sets in $p \circ j(X)$. Let U be open in X. Now, $U \times [0, 1)$ is open in $X \times I$, and it equals $p^{-1}(p(U \times [0, 1))$, so $p(U \times [0, 1))$ is open in C(X). Since $p \circ j(U) = p(U \times [0, 1)) \cap p \circ j(X)$, $p \circ j(U)$ is open in $p \circ j(X)$.