Instructions: Give brief, clear answers.

- I. Let $f: X \to Y$ be a function between topological spaces. Prove that f is continuous if and only if for (10) every $x \in X$ and every open neighborhood V of f(x), there exists an open neighborhood U of x such that $f(U) \subseteq V$.
- **II**. Let (X, d_X) and (Y, d_Y) be two metric spaces. A metric $D: X \times Y \times X \times Y \to \mathbb{R}$ can be defined by
- (10) $D((x_1, y_1), (x_2, y_2)) = d(x_1, x_2) + d(y_1, y_2)$ (you do not need to verify that D is a metric). Prove that the metric topology for D equals the product topology on $X \times Y$ (Hint: First check that $B_{d_X}(x, \epsilon/2) \times B_{d_Y}(y, \epsilon/2) \subseteq B_D((x, y), \epsilon) \subseteq B_{d_X}(x, \epsilon) \times B_{d_Y}(y, \epsilon)$.)
- III. Let $X = \prod_{\alpha \in \mathcal{A}} X_{\alpha}$ be product of nonempty spaces, and suppose that $f: Y \to X$ is a function from a space (10) Y into X. Prove that if $\pi_{\alpha} \circ f$ is continuous for every α , then f is continuous.
- **IV**. Let X be the real numbers with the cofinite topology. (10)
 - 1. Prove that the integers are a dense subset of X.
 - 2. Prove that X is not second countable.
- V. Let $X = \prod_{i=1}^{\infty} \mathbb{R}$ be the product of countably many copies of the real line (where \mathbb{R} has the standard topology and the product has the product topology).
 - 1. State the Tychonoff Theorem.
 - 2. Let $A = \{a_n \mid n \in \mathbb{N}\}$ be a set of real numbers, and for each $n \in \mathbb{N}$, let $x_n \in X$ be the point $(a_n, \ldots, a_n, 0, 0, \ldots)$, where the first n coordinates are a_n and all other coordinates are 0. Suppose that $T: X \to \mathbb{R}$ is a continuous function. Prove that if A is a bounded subset of \mathbb{R} , then $\{T(x_n) \mid n \in \mathbb{N}\}$ is a bounded subset of \mathbb{R} . Hint: For some $M, A \subset [-M, M]$.
- **VI**. Let (X, d) be a metric space and let A and B be compact subsets of X with $A \cap B = \emptyset$. Prove that there (10) exists $\delta_0 > 0$ such that $d(a, b) \ge \delta_0$ for all $a \in A$ and all $b \in B$ (you may assume that $d: X \times X \to \mathbb{R}$ is continuous).
- VII. Say that a space X is *compactly connected* if for every x and y in X, there exists a compact connected (20) subset of X that contains x and y. For each of the following statements, prove or give a counterexample.
 - 1. Every compactly connected space is connected.
 - 2. Every path-connected space is compactly connected.
 - 3. The image of a compactly connected space under a continuous map is compactly connected.
 - 4. Every product of compactly connected spaces is compactly connected (you may take as known the fact that an arbitrary product of connected spaces is connected).

VIII. Recall that a map is called *open* if it takes open sets to open sets.

- (10)
 - 1. Prove that a continuous, surjective, open map must be a quotient map.
 - 2. Give an example of a quotient map that is not an open map (you need not verify that the map is a quotient map).
- IX. State the universal property of quotient maps.

(5)

- X. Suppose that $\{X_{\alpha} \mid \alpha \in \mathcal{A}\}$ is an indexed collection of sets, infinitely many of which are noncompact. (10) Prove that $\prod_{\alpha \in \mathcal{A}} X_{\alpha}$ is not locally compact. (Hint: prove that if a subset *C* contains a basis element, then there is a continuous surjection from *C* onto a noncompact factor, and from this, deduce that $\prod_{\alpha \in \mathcal{A}} X_{\alpha}$ is not locally compact.)
- **XI**. Let A be a subset of \mathbb{R}^5 , which has no limit point in \mathbb{R}^5 , and let $\sigma: A \to \mathbb{R}$ be any function. Prove that
- (10) there exists a continuous map $f : \mathbb{R}^5 \to \mathbb{R}$ with $f|_A = \sigma$.
- XII. For each of the following, prove or give a counterexample.
- (15)
 - 1. If $f: X \to Y$ is a continuous surjective map between compact Hausdorff spaces, then f is a quotient map.
 - 2. If a manifold M has nonempty boundary, then M is compact.
 - 3. Let $f: X \to Y$ be continuous and injective. If $f(x_n) \to f(x)$ in Y, then $x_n \to x$ in X.