Instructions: Give brief, clear answers.
I. Let $f: X \rightarrow Y$ be a function between topological spaces. Prove that f is continuous if and only if for every $x \in X$ and every open neighborhood V of $f(x)$, there exists an open neighborhood U of x such that $f(U) \subseteq V$.

Suppose that f is continuous. Let $x \in X$ and let V be an open neighborhood of $f(x)$. Since f is continuous, $f^{-1}(V)$ is an open neighborhood of x. Taking $U=f^{-1}(V)$, we have $f(U) \subset V$.
Conversely, suppose that for every $x \in X$ and every open neighborhood V of $f(x)$, there exists an open neighborhood U of x such that $f(U) \subseteq V$. Let W be open in Y, and for every $x \in f^{-1}(W)$, choose an open neighborhood U_{x} with $f\left(U_{x}\right) \subseteq W$. Then $f^{-1}(W) \subseteq \cup_{x \in f^{-1}(W)} U_{x} \subseteq f^{-1}(W)$, so $f^{-1}(W)=\cup_{x \in f^{-1}(W)} U_{x}$. Since this is a union of open sets, it is open. Since W was an arbitrary open subset of Y, this proves that f is continuous.
II. Let $\left(X, d_{X}\right)$ and $\left(Y, d_{Y}\right)$ be two metric spaces. A metric $D: X \times Y \times X \times Y \rightarrow \mathbb{R}$ can be defined by (10) $D\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)=d\left(x_{1}, x_{2}\right)+d\left(y_{1}, y_{2}\right) \quad$ (you do not need to verify that D is a metric). Prove that the metric topology for D equals the product topology on $X \times Y$ (Hint: First check that $B_{d_{X}}(x, \epsilon / 2) \times$ $\left.B_{d_{Y}}(y, \epsilon / 2) \subseteq B_{D}((x, y), \epsilon) \subseteq B_{d_{X}}(x, \epsilon) \times B_{d_{Y}}(y, \epsilon).\right)$

First we note that if $\left(x_{1}, y_{1}\right) \in B_{d_{X}}(x, \epsilon / 2) \times B_{d_{Y}}(y, \epsilon / 2)$, then

$$
D\left(\left(x_{1}, y_{1}\right),(x, y)\right)=d_{X}\left(x_{1}, x\right)+d_{Y}\left(y_{1}, y\right)<\epsilon / 2+\epsilon / 2=\epsilon
$$

so $\left(x_{1}, y_{1}\right) \in B_{D}((x, y))$. Therefore $B_{d_{X}}(x, \epsilon / 2) \times B_{d_{Y}}(y, \epsilon / 2) \subseteq B_{D}((x, y), \epsilon)$. Also, if $\left(x_{2}, y_{2}\right) \in$ $B_{D}((x, y), \epsilon)$, then

$$
d_{X}\left(x_{2}, x\right) \leq d_{X}\left(x_{2}, x\right)+d_{Y}\left(y_{2}, y\right)=D\left(\left(x_{2}, y_{2}\right),(x, y)\right)<\epsilon
$$

so $x_{2} \in B_{d_{X}}(x, \epsilon)$ and similarly $y_{2} \in B_{d_{Y}}(y, \epsilon)$. This shows that $B_{D}((x, y), \epsilon) \subseteq B_{d_{X}}(x, \epsilon) \times B_{d_{Y}}(y, \epsilon)$. Now, let \mathcal{B} be the set of ϵ-balls for the D-metric. By definition it generates the D-metric topology. We will verify the conditions of the Basis Recognition Theorem in order to verify that \mathcal{B} it generates the product topology.
To show that the sets $B_{D}((x, y), \epsilon)$ are open in the product topology, let $\left(x_{1}, y_{1}\right) \in B_{D}((x, y), \epsilon)$. Then there exists a δ (in fact, $\left.\delta=\epsilon-D\left(\left(x_{1}, y_{1}\right),(x, y)\right)\right)$ such that $B_{D}\left(\left(x_{1}, y_{1}\right), \delta\right) \subseteq B_{D}((x, y), \epsilon)$. So we have $B_{d_{X}}(x, \delta / 2) \times B_{d_{Y}}(y, \delta / 2) \subseteq B_{D}\left(\left(x_{1}, y_{1}\right), \delta\right) \subseteq B_{D}\left(\left(x_{1}, y_{1}\right), \epsilon\right)$. Therefore the sets $B_{D}((x, y), \epsilon)$ are open in the product topology. For the second condition, let an set U open in the product topology and a point $(x, y) \in U$ be given. There exists a basic open set $B_{d_{X}}\left(x, \epsilon_{1}\right) \times B_{d_{Y}}\left(y, \epsilon_{2}\right)$ contained in U. Let ϵ be the minimum of ϵ_{1} and ϵ_{2}. Then we have $(x, y) \in B_{D}((x, y), \epsilon) \subseteq B_{d_{X}}(x, \epsilon) \times B_{d_{Y}}(y, \epsilon) \subseteq U$.
III. Let $X=\prod_{\alpha \in \mathcal{A}} X_{\alpha}$ be product of nonempty spaces, and suppose that $f: Y \rightarrow X$ is a function from a space
(10) $\quad Y$ a Y into X. Prove that if $\pi_{\alpha} \circ f$ is continuous for every α, then f is continuous.

Let $\pi_{\alpha_{1}}^{-1}\left(U_{\alpha_{1}}\right) \cap \cdots \cap \pi_{\alpha_{n}}^{-1}\left(U_{\alpha_{n}}\right)$ be a basic open set in $\prod_{\alpha \in \mathcal{A}} X_{\alpha}$. We have

$$
\begin{aligned}
f^{-1}\left(\pi_{\alpha_{1}}^{-1}\left(U_{\alpha_{1}}\right)\right. & \left.\cap \cdots \cap \pi_{\alpha_{n}}^{-1}\left(U_{\alpha_{n}}\right)\right)=f^{-1}\left(\pi_{\alpha_{1}}^{-1}\left(U_{\alpha_{1}}\right)\right) \cap \cdots \cap f^{-1}\left(\pi_{\alpha_{n}}^{-1}\left(U_{\alpha_{n}}\right)\right) \\
& =\left(\pi_{\alpha_{1}} \circ f\right)^{-1}\left(U_{\alpha_{1}}\right) \cap \cdots \cap\left(\pi_{\alpha_{n}} \circ f\right)^{-1}\left(U_{\alpha_{n}}\right)
\end{aligned}
$$

Since each $\pi_{\alpha_{i}} \circ f$ is continuous, each $\left(\pi_{\alpha_{i}} \circ f\right)^{-1}\left(U_{\alpha_{i}}\right)$ is open, so $\left.\left(\pi_{\alpha_{1}} \circ f\right)^{-1}\left(U_{\alpha_{1}}\right)\right) \cap \cdots \cap\left(\pi_{\alpha_{n}} \circ f\right)^{-1}\left(U_{\alpha_{n}}\right)$ is open.
IV. Let X be the real numbers with the cofinite topology.
(10)

1. Prove that the integers are a dense subset of X.

Let U be a nonempty open subset of X. Then $U=\mathbb{R}-\left\{r_{1}, \ldots, r_{n}\right\}$ for some finite subset $\left\{r_{1}, \ldots, r_{n}\right\}$ of \mathbb{R}. Since this set is finite, it does not contain all of \mathbb{Z}, so there exists $n \in \mathbb{Z} \cap U$. Therefore \mathbb{Z} is dense.
2. Prove that X is not second countable.

Let $\left\{U_{1}, U_{2}, \ldots\right\}$ be a countable collection of open subsets. We may delete any empty elements to assume that all are nonempty. Each nonempty U_{i} is of the form $\mathbb{R}-F_{i}$ for some finite subset. The union $\cup_{i=1}^{\infty} F_{i}$ is countable, so there exists $r_{0} \in \mathbb{R}-\cup_{i=1}^{\infty} F_{i}$. The set $U=\mathbb{R}-\left\{r_{0}\right\}$ is open, and does not contain any U_{i} since $r_{0} \in U_{i}$ for every U_{i}. So U is not a union of any subcollection of $\left\{U_{1}, U_{2}, \ldots\right\}$, and consequently this collection is not a basis of X.
V. Let $X=\prod_{i=1}^{\infty} \mathbb{R}$ be the product of countably many copies of the real line (where \mathbb{R} has the standard topology
(10) and the product has the product topology).

1. State the Tychonoff Theorem.

A product of compact spaces is compact.
2. Let $A=\left\{a_{n} \mid n \in \mathbb{N}\right\}$ be a set of real numbers, and for each $n \in \mathbb{N}$, let $x_{n} \in X$ be the point $\left(a_{n}, \ldots, a_{n}, 0,0, \ldots\right)$, where the first n coordinates are a_{n} and all other coordinates are 0 . Suppose that $T: X \rightarrow \mathbb{R}$ is a continuous function. Prove that if A is a bounded subset of \mathbb{R}, then $\left\{T\left(x_{n}\right) \mid n \in \mathbb{N}\right\}$ is a bounded subset of X. Hint: For some $M, A \subset[-M, M]$.

Since A is a bounded subset of \mathbb{R}, there exists a number M so that $A \subset[-M, M]$. Since $[-M, M]$ is compact, the Tychonoff Theorem shows that $\prod_{i=1}^{\infty}[-M, M]$ is a compact subset of X. Therefore $T\left(\prod_{i=1}^{\infty}[-M, M]\right)$ is a bounded subset of \mathbb{R}. Since $T\left(\prod_{i=1}^{\infty}[-M, M]\right)$ contains every $T\left(x_{n}\right)$, this shows that $\left\{T\left(x_{n}\right) \mid n \in \mathbb{N}\right\}$ is a bounded subset of \mathbb{R}.
VI. Let (X, d) be a metric space and let A and B be compact subsets of X with $A \cap B=\emptyset$. Prove that there (10) exists $\delta_{0}>0$ such that $d(a, b) \geq \delta_{0}$ for all $a \in A$ and all $b \in B$ (you may assume that $d: X \times X \rightarrow \mathbb{R}$ is continuous).

Consider $\left.d\right|_{A \times B}: A \times B \rightarrow \mathbb{R}$. It is continuous since it is a restriction of d, and since A and B are compact, $A \times B$ is also compact. Therefore $\left.d\right|_{A \times B}$ assumes a minimum value, that is, there is a pair $\left(a_{0}, b_{0}\right) \in A \times B$ with $d\left(a_{0}, b_{0}\right) \leq d(a, b)$ for all $(a, b) \in A \times B$. Since $A \cap B=\emptyset, a_{0} \neq b_{0}$ and therefore $d\left(a_{0}, b_{0}\right)>0$. This (or any smaller positive number) is the desired values of δ_{0}.
VII. Say that a space X is compactly connected if for every x and y in X, there exists a compact connected (20) subset of X that contains x and y. For each of the following statements, prove or give a counterexample.

1. Every compactly connected space is connected.

Proof: Fix $x_{0} \in X$. For each $x \in X$, choose a compact connected set A_{x} containing x_{0} and x. Since all A_{x} are connected, and thier intersection is nonempty, $X=\cup_{x \in X} A_{x}$ is connected.
2. Every path-connected space is compactly connected.

Proof: Given x and y in X, choose a path $\alpha: I \rightarrow X$ from x to y. Since I is compact and connected, so is the image $\alpha(I)$. Since $\alpha(I)$ contains x and y, this shows that X is compactly connected.
3. The image of a compactly connected space under a continuous map is compactly connected.

Proof: Let $f: X \rightarrow Y$ be continuous, with X compactly connected, and choose y_{1} and y_{2} in $f(X)$. Choose $x_{i} \in X$ with $f\left(x_{i}\right)=y_{i}$. Since X is compactly connected, there exists a compact connected set $C \subseteq X$ with $x_{1}, x_{2} \in C$. Then, $f(C)$ is a compact, connected subset of Y containing y_{1} and y_{2}.
4. Every product of compactly connected spaces is compactly connected (you may take as known the fact that an arbitrary product of connected spaces is connected).

Proof: Let $\prod X_{\alpha}$ be a product of compactly connected spaces, and let $\left(x_{\alpha}\right),\left(y_{\alpha}\right) \in \prod X_{\alpha}$. For each α, choose a compact, connected subset $C_{\alpha} \in X_{\alpha}$ containing x_{α} and y_{α}. Then, \prod_{α} is connected, and is compact by the Tychonoff Theorem, so is a compact, connected subset of $\prod X_{\alpha}$ containing (x_{α}) and $\left(y_{\alpha}\right)$.
VIII. Recall that a map is called open if it takes open sets to open sets.
(10)

1. Prove that a continuous, surjective, open map must be a quotient map.

Let $f: X \rightarrow Y$ be continuous, surjective, and open. Let U be a open subset of Y. We must show that U is open in Y if and only if $f^{-1}(U)$ is open in X.
If U is open in Y, then $f^{-1}(U)$ is open in X since X is continuous. Suppose that $f^{-1}(U)$ is open in X. Since f is an open map, $f\left(f^{-1}(U)\right)$ is open in Y, and since f is surjective, $f\left(f^{-1}(U)\right)=U$.
2. Give an example of a quotient map that is not an open map (you need not verify that the map is a quotient map).

Define $q:[0,1] \rightarrow S^{1}$ by $q(t)=e^{2 \pi i t}$. This is a quotient map, but the image of the open set $[0,1 / 2)$ is not open in S^{1}.
IX. State the universal property of quotient maps.

Let $p: X \rightarrow Y$ be a quotient map, and let $f: Y \rightarrow Z$ be a function. The uinversal property says that f is continuous if and only if $f \circ p$ is continuous.
X. Suppose that $\left\{X_{\alpha} \mid \alpha \in \mathcal{A}\right\}$ is an indexed collection of sets, infinitely many of which are noncompact.
(10) Prove that $\prod_{\alpha \in \mathcal{A}} X_{\alpha}$ is not locally compact. (Hint: prove that if a subset C contains a basis element, then there is a continuous surjection from C onto a noncompact factor, and from this, deduce that $\prod_{\alpha \in \mathcal{A}} X_{\alpha}$ is not locally compact.)

Suppose that $\left\{X_{\alpha} \mid \alpha \in \mathcal{A}\right\}$ is locally compact, and choose a point $\left(x_{\alpha}\right)$ in $\left\{X_{\alpha} \mid \alpha \in \mathcal{A}\right\}$. Then there is a compact subset C containing an open neighborhood $\pi_{\alpha_{1}}^{-1}\left(U_{\alpha_{1}}\right) \cap \cdots \cap \pi_{\alpha_{n}}^{-1}\left(U_{\alpha_{n}}\right)$ of $\left(x_{\alpha}\right)$. Since there are inifintely many noncompact factors, we may choose an index β such that X_{β} is noncompact and β is not equal to one of the α_{i}. The projection map $\pi_{\beta}: C \rightarrow X_{\beta}$ is surjective, since for any $y \in X_{\beta}$, the point (y_{α}) with all $y_{\alpha}=x_{\alpha}$ except that $y_{\beta}=y$ lies in $\pi_{\alpha_{1}}^{-1}\left(U_{\alpha_{1}}\right) \cap \cdots \cap \pi_{\alpha_{n}}^{-1}\left(U_{\alpha_{n}}\right)$, and hence in C, and $\pi_{\beta}\left(\left(y_{\alpha}\right)\right)=y_{\beta}=y$. But this is impossible, as C is compact and X_{β} is noncompact.
XI. Let A be a subset of \mathbb{R}^{5}, which has no limit point in \mathbb{R}^{5}, and let $\sigma: A \rightarrow \mathbb{R}$ be any function. Prove that (10) there exists a continuous map $f: \mathbb{R}^{5} \rightarrow \mathbb{R}$ with $\left.f\right|_{A}=\sigma$.

We know that \mathbb{R}^{5} normal (since it is metrizable). Now A is closed, since it contains all of its limit points. Also, it has the discrete topology since for every $a \in A$, there exists a neighborhood U of a with $U \cap A=\{a\}$ (otherwise a would be a limit point of A). Since A has the discrete topology, σ is continuous, so the Tietze Extension Theorem implies that there is an extension of σ to a continuous $\operatorname{map} f: \mathbb{R}^{5} \rightarrow \mathbb{R}$.
XII. For each of the following, prove or give a counterexample.
(15)

1. If $f: X \rightarrow Y$ is a continuous surjective map between compact Hausdorff spaces, then f is a quotient map.

Proof: Let C be a subset of Y. If C is closed, then $f^{-1}(C)$ is closed in X since f is continuous. If $f^{-1}(C)$ is closed in X, then it is compact, so $C=f\left(f^{-1}(C)\right)$ is closed in Y.
2. If a manifold M has nonempty boundary, then M is compact.

Counterexample: The upper half space \mathbb{H} is a manifold with nonempty boundary, but it is not compact.
3. Let $f: X \rightarrow Y$ be continuous and injective. If $f\left(x_{n}\right) \rightarrow f(x)$ in Y, then $x_{n} \rightarrow x$ in X.

Counterexample: Let $f:[0,1) \rightarrow S^{1}$ be $f(t)=e^{2 \pi i t}$. For the sequence $x_{n}=1-\frac{1}{n}, f\left(x_{n}\right)$ converges to $(1,0)=f(0)$, but x_{n} does not converge to 0 in $[0,1)$.

