Mathematics 5853 Name (please print)

Final Examination
December 13, 2004

Instructions: Give brief, clear answers.

L Let f: X — Y be a function between topological spaces. Prove that f is continuous if and only if for
(10)  every z € X and every open neighborhood V' of f(z), there exists an open neighborhood U of = such that
f)cv.

Suppose that f is continuous. Let x € X and let V' be an open neighborhood of f(x). Since f is
continuous, f~(V) is an open neighborhood of x. Taking U = f~(V'), we have f(U) C V.
Conversely, suppose that for every x € X and every open neighborhood V' of f(z), there exists an
open neighborhood U of x such that f(U) C V. Let W be open in Y, and for every xz € f~1(W),
choose an open neighborhood U, with f(U,) € W. Then f~1(W) C Uper—1w)Uz C f~YwW), so
1w = Uges-1(w)Usz. Since this is a union of open sets, it is open. Since W was an arbitrary open
subset of Y, this proves that f is continuous.

II. Let (X,dx) and (Y,dy) be two metric spaces. A metric D: X XY x X xY — R can be defined by
(10)  D((z1,y1), (z2,92)) = d(x1,22) + d(y1,y2) (you do not need to verify that D is a metric). Prove that
the metric topology for D equals the product topology on X x Y (Hint: First check that By, (z,€/2) x

By (y,€/2) € Bp((2,9),€) € Bay (2, €) X Bay (y,€).)
First we note that if (x1,y1) € Ba, (x,€/2) x Bg, (y,€/2), then
D((xhyl)u (xay)) = dX(SUl,.’E) + dY(ylay) < 6/2 + 6/2 =€,

so (z1,y1) € Bp((z,y)). Therefore By, (z,€/2) x Bq, (y,€/2) C Bp((z,y),€). Also, if (x2,y2) €
Bp((z,y),€), then

dx(l'g,l') < dx(l'g,l') + dY(y27y) - D((x%yQ)v (xvy)) <€,

S0 g € By, (x,€) and similarly yo € By, (v, €). This shows that Bp((z,y),€) C Bay (z,€) X Bgy (y, €).
Now, let B be the set of e-balls for the D-metric. By definition it generates the D-metric topology.
We will verify the conditions of the Basis Recognition Theorem in order to verify that B it generates
the product topology.

To show that the sets Bp((z,y), €) are open in the product topology, let (x1,y1) € Bp((x,y),€). Then
there exists a d (in fact, § = ¢ — D((x1,91), (z,y))) such that Bp((x1,91),9) € Bp((x,y),€). So we
have Bg, (z,6/2) x Bg, (y,6/2) € Bp((x1,y1),9) € Bp((x1,y1),€). Therefore the sets Bp((z,y),€)
are open in the product topology. For the second condition, let an set U open in the product topology
and a point (z,y) € U be given. There exists a basic open set B, (z,€1) X By, (y, €2) contained in U.
Let € be the minimum of €; and e3. Then we have (x,y) € Bp((z,y),€) C Bay (x,€) X Bg, (y,€) C U.

III. Let X = H X, be product of nonempty spaces, and suppose that f: Y — X is a function from a space

(10) acA
Y into X. Prove that if 7, o f is continuous for every «, then f is continuous.

Let 73 (Uay) N -+~ N7y (Ua,) be a basic open set in H Xo. We have
acA
e (Ua) NN [ (Ua,)) = fH (g, (Uay)) N0 f 7 (g (Ua,)
= (Tay © /)" (Uay) N+ N (w0, © f) 7 (Uay) -

Since each 74,0 f is continuous, each (4,0 f) 1 (Uy,) is open, 50 (74,0 f) "1 (Uay ))N: - -N(a,0f) 1 (Ua,,)
is open.
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IV. Let X be the real numbers with the cofinite topology.
(10)
1. Prove that the integers are a dense subset of X.

Let U be a nonempty open subset of X. Then U =R — {ry,...,r,} for some finite subset {ry,...,r,}
of R. Since this set is finite, it does not contain all of Z, so there exists n € ZNU. Therefore Z is dense.

2. Prove that X is not second countable.

Let {U1,Us,...} be a countable collection of open subsets. We may delete any empty elements to
assume that all are nonempty. Each nonempty U; is of the form R — F; for some finite subset. The
union U, F; is countable, so there exists 19 € R — U, F;. The set U = R — {rg} is open, and does not
contain any U; since ro € U; for every U;. So U is not a union of any subcollection of {Uy, Us,. ..}, and
consequently this collection is not a basis of X.

o
V. Let X = H R be the product of countably many copies of the real line (where R has the standard topology
(10) i=1
and the product has the product topology).

1. State the Tychonoff Theorem.
A product of compact spaces is compact.

2. Let A = {an, | n € N} be a set of real numbers, and for each n € N, let z, € X be the point
(an,--.,an,0,0,...), where the first n coordinates are a,, and all other coordinates are 0. Suppose that
T: X — R is a continuous function. Prove that if A is a bounded subset of R, then {T'(x,)|n € N} is a
bounded subset of X. Hint: For some M, A C [-M, M].

Since A is a bounded subset of R, there exists a number M so that A C [-M,M]. Since [—M, M]

o0
is compact, the Tychonoff Theorem shows that 1_[[—M7 M] is a compact subset of X. Therefore

=1
0o 00

T(H[—M, M]) is a bounded subset of R. Since T(H[—M, M]) contains every T'(zy), this shows that
i= i=1

1
{T'(zy) | n € N} is a bounded subset of R.

VI. Let (X,d) be a metric space and let A and B be compact subsets of X with AN B = (). Prove that there
(10)  exists dp > 0 such that d(a,b) > g for all a € A and all b € B (you may assume that d: X x X — R is
continuous).

Consider d|axp: A x B — R. It is continuous since it is a restriction of d, and since A and B are
compact, A x B is also compact. Therefore d|4xp assumes a minimum value, that is, there is a pair
(ap,bo) € A x B with d(ag,by) < d(a,b) for all (a,b) € A x B. Since AN B =), ag # by and therefore
d(ap,bp) > 0. This (or any smaller positive number) is the desired values of dy.
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VII. Say that a space X is compactly connected if for every x and y in X, there exists a compact connected
(20)  subset of X that contains = and y. For each of the following statements, prove or give a counterexample.

1. Every compactly connected space is connected.

Proof: Fix g € X. For each x € X, choose a compact connected set A, containing zg and x. Since all
A, are connected, and thier intersection is nonempty, X = U,cx A, is connected.

2. Every path-connected space is compactly connected.

Proof: Given z and y in X, choose a path a: I — X from x to y. Since [ is compact and connected,
so is the image «(7). Since a([l) contains z and y, this shows that X is compactly connected.

3. The image of a compactly connected space under a continuous map is compactly connected.

Proof: Let f: X — Y be continuous, with X compactly connected, and choose y; and ys in f(X).
Choose z; € X with f(z;) = y;. Since X is compactly connected, there exists a compact connected set
C C X with z1,29 € C. Then, f(C) is a compact, connected subset of Y containing y; and ys.

4. Every product of compactly connected spaces is compactly connected (you may take as known the fact that
an arbitrary product of connected spaces is connected).

Proof: Let [[ X, be a product of compactly connected spaces, and let (z4), (ya) € [[ Xo. For each a,
choose a compact, connected subset C,, € X, containing x, and yo. Then, [[ C, is connected, and is
compact by the Tychonoff Theorem, so is a compact, connected subset of [[ X, containing (x,) and

(Ya)-

VIII. Recall that a map is called open if it takes open sets to open sets.
(10)

1. Prove that a continuous, surjective, open map must be a quotient map.

Let f: X — Y be continuous, surjective, and open. Let U be a open subset of Y. We must show that
U is open in Y if and only if f~1(U) is open in X.

If U is open in Y, then f~!(U) is open in X since X is continuous. Suppose that f~!(U) is open in X.
Since f is an open map, f(f~1(U)) is open in Y, and since f is surjective, f(f~1(U)) =U.

2. Give an example of a quotient map that is not an open map (you need not verify that the map is a quotient
map).

Define q: [0,1] — S* by ¢(t) = €2>™. This is a quotient map, but the image of the open set [0,1/2) is
not open in S*.

IX.  State the universal property of quotient maps.

()

Let p: X — Y be a quotient map, and let f: ¥ — Z be a function. The uinversal property says that
f is continuous if and only if f o p is continuous.
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X. Suppose that {X, | « € A} is an indexed collection of sets, infinitely many of which are noncompact.

(10)  Prove that H X, is not locally compact. (Hint: prove that if a subset C' contains a basis element, then
acA

there is a continuous surjection from C' onto a noncompact factor, and from this, deduce that H X, is

acA
not locally compact.)

Suppose that {X, | @ € A} is locally compact, and choose a point (z,) in {X, | @ € A}. Then there
is a compact subset C' containing an open neighborhood 73 (Us,) N -+ N7y (Ua,) of (z4). Since
there are inifintely many noncompact factors, we may choose an index 3 such that X is noncompact
and (3 is not equal to one of the ;. The projection map mg: C' — Xjp is surjective, since for any
y € Xpg, the point (yo) with all yo = 24 except that yg = y lies in 7, (Ua,) N -+ N7,  (Us,), and
hence in C, and 73((ya)) = yg = y. But this is impossible, as C' is compact and X3 is noncompact.

XI. Let A be a subset of R®, which has no limit point in R®, and let o: A — R be any function. Prove that
(10)  there exists a continuous map f: R> — R with f|4 = 0.

We know that R5 normal (since it is metrizable). Now A is closed, since it contains all of its limit
points. Also, it has the discrete topology since for every a € A, there exists a neighborhood U of a
with U N A = {a} (otherwise a would be a limit point of A). Since A has the discrete topology, o is
continuous, so the Tietze Extension Theorem implies that there is an extension of o to a continuous
map f: R — R.

XII. For each of the following, prove or give a counterexample.
(15)
1. If f: X — Y is a continuous surjective map between compact Hausdorff spaces, then f is a quotient map.

Proof: Let C be a subset of Y. If C is closed, then f~1(C) is closed in X since f is continuous. If
f71(C) is closed in X, then it is compact, so C' = f(f~(C)) is closed in Y.

2. If a manifold M has nonempty boundary, then M is compact.
Counterexample: The upper half space H is a manifold with nonempty boundary, but it is not compact.
3. Let f: X — Y be continuous and injective. If f(z,) — f(x) in Y, then z,, — x in X.

Counterexample: Let f: [0,1) — S! be f(t) = ™. For the sequence z,, = 1 — 1, f(z,,) converges to
(1,0) = £(0), but x,, does not converge to 0 in [0, 1).



