
Mathematics 5853
Final Examination
December 13, 2004

Name (please print)

Instructions: Give brief, clear answers.

I.
(10)

Let f : X → Y be a function between topological spaces. Prove that f is continuous if and only if for
every x ∈ X and every open neighborhood V of f(x), there exists an open neighborhood U of x such that
f(U) ⊆ V .

Suppose that f is continuous. Let x ∈ X and let V be an open neighborhood of f(x). Since f is
continuous, f−1(V ) is an open neighborhood of x. Taking U = f−1(V ), we have f(U) ⊂ V .
Conversely, suppose that for every x ∈ X and every open neighborhood V of f(x), there exists an
open neighborhood U of x such that f(U) ⊆ V . Let W be open in Y , and for every x ∈ f−1(W ),
choose an open neighborhood Ux with f(Ux) ⊆ W . Then f−1(W ) ⊆ ∪x∈f−1(W )Ux ⊆ f−1(W ), so
f−1(W ) = ∪x∈f−1(W )Ux. Since this is a union of open sets, it is open. Since W was an arbitrary open
subset of Y , this proves that f is continuous.

II.
(10)

Let (X, dX) and (Y, dY ) be two metric spaces. A metric D : X × Y × X × Y → R can be defined by
D((x1, y1), (x2, y2)) = d(x1, x2) + d(y1, y2) (you do not need to verify that D is a metric). Prove that
the metric topology for D equals the product topology on X × Y (Hint: First check that BdX

(x, ε/2) ×
BdY

(y, ε/2) ⊆ BD((x, y), ε) ⊆ BdX
(x, ε)×BdY

(y, ε).)

First we note that if (x1, y1) ∈ BdX
(x, ε/2)×BdY

(y, ε/2), then

D((x1, y1), (x, y)) = dX(x1, x) + dY (y1, y) < ε/2 + ε/2 = ε ,

so (x1, y1) ∈ BD((x, y)). Therefore BdX
(x, ε/2) × BdY

(y, ε/2) ⊆ BD((x, y), ε). Also, if (x2, y2) ∈
BD((x, y), ε), then

dX(x2, x) ≤ dX(x2, x) + dY (y2, y) = D((x2, y2), (x, y)) < ε ,

so x2 ∈ BdX
(x, ε) and similarly y2 ∈ BdY

(y, ε). This shows that BD((x, y), ε) ⊆ BdX
(x, ε)×BdY

(y, ε).
Now, let B be the set of ε-balls for the D-metric. By definition it generates the D-metric topology.
We will verify the conditions of the Basis Recognition Theorem in order to verify that B it generates
the product topology.
To show that the sets BD((x, y), ε) are open in the product topology, let (x1, y1) ∈ BD((x, y), ε). Then
there exists a δ (in fact, δ = ε − D((x1, y1), (x, y))) such that BD((x1, y1), δ) ⊆ BD((x, y), ε). So we
have BdX

(x, δ/2) × BdY
(y, δ/2) ⊆ BD((x1, y1), δ) ⊆ BD((x1, y1), ε). Therefore the sets BD((x, y), ε)

are open in the product topology. For the second condition, let an set U open in the product topology
and a point (x, y) ∈ U be given. There exists a basic open set BdX

(x, ε1)×BdY
(y, ε2) contained in U .

Let ε be the minimum of ε1 and ε2. Then we have (x, y) ∈ BD((x, y), ε) ⊆ BdX
(x, ε)×BdY

(y, ε) ⊆ U .

III.
(10)

Let X =
∏
α∈A

Xα be product of nonempty spaces, and suppose that f : Y → X is a function from a space

Y into X. Prove that if πα ◦ f is continuous for every α, then f is continuous.

Let π−1
α1

(Uα1) ∩ · · · ∩ π−1
αn

(Uαn) be a basic open set in
∏
α∈A

Xα. We have

f−1(π−1
α1

(Uα1) ∩ · · · ∩ π−1
αn

(Uαn)) = f−1(π−1
α1

(Uα1)) ∩ · · · ∩ f−1(π−1
αn

(Uαn))

= (πα1 ◦ f)−1(Uα1) ∩ · · · ∩ (παn ◦ f)−1(Uαn) .

Since each παi◦f is continuous, each (παi◦f)−1(Uαi) is open, so (πα1◦f)−1(Uα1))∩· · ·∩(παn◦f)−1(Uαn)
is open.
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IV.
(10)

Let X be the real numbers with the cofinite topology.

1. Prove that the integers are a dense subset of X.

Let U be a nonempty open subset of X. Then U = R− {r1, . . . , rn} for some finite subset {r1, . . . , rn}
of R. Since this set is finite, it does not contain all of Z, so there exists n ∈ Z∩U . Therefore Z is dense.

2. Prove that X is not second countable.

Let {U1, U2, . . .} be a countable collection of open subsets. We may delete any empty elements to
assume that all are nonempty. Each nonempty Ui is of the form R − Fi for some finite subset. The
union ∪∞i=1Fi is countable, so there exists r0 ∈ R−∪∞i=1Fi. The set U = R−{r0} is open, and does not
contain any Ui since r0 ∈ Ui for every Ui. So U is not a union of any subcollection of {U1, U2, . . .}, and
consequently this collection is not a basis of X.

V.
(10)

Let X =
∞∏
i=1

R be the product of countably many copies of the real line (where R has the standard topology

and the product has the product topology).

1. State the Tychonoff Theorem.

A product of compact spaces is compact.

2. Let A = {an | n ∈ N} be a set of real numbers, and for each n ∈ N, let xn ∈ X be the point
(an, . . . , an, 0, 0, ...), where the first n coordinates are an and all other coordinates are 0. Suppose that
T : X → R is a continuous function. Prove that if A is a bounded subset of R, then {T (xn)|n ∈ N} is a
bounded subset of X. Hint: For some M , A ⊂ [−M,M ].

Since A is a bounded subset of R, there exists a number M so that A ⊂ [−M,M ]. Since [−M,M ]

is compact, the Tychonoff Theorem shows that
∞∏
i=1

[−M,M ] is a compact subset of X. Therefore

T (
∞∏
i=1

[−M,M ]) is a bounded subset of R. Since T (
∞∏
i=1

[−M,M ]) contains every T (xn), this shows that

{T (xn) | n ∈ N} is a bounded subset of R.

VI.
(10)

Let (X, d) be a metric space and let A and B be compact subsets of X with A ∩B = ∅. Prove that there
exists δ0 > 0 such that d(a, b) ≥ δ0 for all a ∈ A and all b ∈ B (you may assume that d : X × X → R is
continuous).

Consider d|A×B : A × B → R. It is continuous since it is a restriction of d, and since A and B are
compact, A×B is also compact. Therefore d|A×B assumes a minimum value, that is, there is a pair
(a0, b0) ∈ A×B with d(a0, b0) ≤ d(a, b) for all (a, b) ∈ A×B. Since A∩B = ∅, a0 6= b0 and therefore
d(a0, b0) > 0. This (or any smaller positive number) is the desired values of δ0.
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VII.
(20)

Say that a space X is compactly connected if for every x and y in X, there exists a compact connected
subset of X that contains x and y. For each of the following statements, prove or give a counterexample.

1. Every compactly connected space is connected.

Proof: Fix x0 ∈ X. For each x ∈ X, choose a compact connected set Ax containing x0 and x. Since all
Ax are connected, and thier intersection is nonempty, X = ∪x∈XAx is connected.

2. Every path-connected space is compactly connected.

Proof: Given x and y in X, choose a path α : I → X from x to y. Since I is compact and connected,
so is the image α(I). Since α(I) contains x and y, this shows that X is compactly connected.

3. The image of a compactly connected space under a continuous map is compactly connected.

Proof: Let f : X → Y be continuous, with X compactly connected, and choose y1 and y2 in f(X).
Choose xi ∈ X with f(xi) = yi. Since X is compactly connected, there exists a compact connected set
C ⊆ X with x1, x2 ∈ C. Then, f(C) is a compact, connected subset of Y containing y1 and y2.

4. Every product of compactly connected spaces is compactly connected (you may take as known the fact that
an arbitrary product of connected spaces is connected).

Proof: Let
∏

Xα be a product of compactly connected spaces, and let (xα), (yα) ∈
∏

Xα. For each α,
choose a compact, connected subset Cα ∈ Xα containing xα and yα. Then,

∏
Cα is connected, and is

compact by the Tychonoff Theorem, so is a compact, connected subset of
∏

Xα containing (xα) and
(yα).

VIII.
(10)

Recall that a map is called open if it takes open sets to open sets.

1. Prove that a continuous, surjective, open map must be a quotient map.

Let f : X → Y be continuous, surjective, and open. Let U be a open subset of Y . We must show that
U is open in Y if and only if f−1(U) is open in X.
If U is open in Y , then f−1(U) is open in X since X is continuous. Suppose that f−1(U) is open in X.
Since f is an open map, f(f−1(U)) is open in Y , and since f is surjective, f(f−1(U)) = U .

2. Give an example of a quotient map that is not an open map (you need not verify that the map is a quotient
map).

Define q : [0, 1] → S1 by q(t) = e2πit. This is a quotient map, but the image of the open set [0, 1/2) is
not open in S1.

IX.
(5)

State the universal property of quotient maps.

Let p : X → Y be a quotient map, and let f : Y → Z be a function. The uinversal property says that
f is continuous if and only if f ◦ p is continuous.
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X.
(10)

Suppose that {Xα | α ∈ A} is an indexed collection of sets, infinitely many of which are noncompact.
Prove that

∏
α∈A

Xα is not locally compact. (Hint: prove that if a subset C contains a basis element, then

there is a continuous surjection from C onto a noncompact factor, and from this, deduce that
∏
α∈A

Xα is

not locally compact.)

Suppose that {Xα | α ∈ A} is locally compact, and choose a point (xα) in {Xα | α ∈ A}. Then there
is a compact subset C containing an open neighborhood π−1

α1
(Uα1) ∩ · · · ∩ π−1

αn
(Uαn) of (xα). Since

there are inifintely many noncompact factors, we may choose an index β such that Xβ is noncompact
and β is not equal to one of the αi. The projection map πβ : C → Xβ is surjective, since for any
y ∈ Xβ, the point (yα) with all yα = xα except that yβ = y lies in π−1

α1
(Uα1) ∩ · · · ∩ π−1

αn
(Uαn), and

hence in C, and πβ((yα)) = yβ = y. But this is impossible, as C is compact and Xβ is noncompact.

XI.
(10)

Let A be a subset of R5, which has no limit point in R5, and let σ : A → R be any function. Prove that
there exists a continuous map f : R5 → R with f |A = σ.

We know that R5 normal (since it is metrizable). Now A is closed, since it contains all of its limit
points. Also, it has the discrete topology since for every a ∈ A, there exists a neighborhood U of a
with U ∩ A = {a} (otherwise a would be a limit point of A). Since A has the discrete topology, σ is
continuous, so the Tietze Extension Theorem implies that there is an extension of σ to a continuous
map f : R5 → R.

XII.
(15)

For each of the following, prove or give a counterexample.

1. If f : X → Y is a continuous surjective map between compact Hausdorff spaces, then f is a quotient map.

Proof: Let C be a subset of Y . If C is closed, then f−1(C) is closed in X since f is continuous. If
f−1(C) is closed in X, then it is compact, so C = f(f−1(C)) is closed in Y .

2. If a manifold M has nonempty boundary, then M is compact.

Counterexample: The upper half space H is a manifold with nonempty boundary, but it is not compact.

3. Let f : X → Y be continuous and injective. If f(xn) → f(x) in Y , then xn → x in X.

Counterexample: Let f : [0, 1) → S1 be f(t) = e2πit. For the sequence xn = 1− 1
n , f(xn) converges to

(1, 0) = f(0), but xn does not converge to 0 in [0, 1).


