Instructions: Give brief, clear answers.

I. Let $f: X \to Y$ be a function between topological spaces. Prove that f is continuous if and only if for (10) every $x \in X$ and every open neighborhood V of f(x), there exists an open neighborhood U of x such that $f(U) \subseteq V$.

> Suppose that f is continuous. Let $x \in X$ and let V be an open neighborhood of f(x). Since f is continuous, $f^{-1}(V)$ is an open neighborhood of x. Taking $U = f^{-1}(V)$, we have $f(U) \subset V$. Conversely, suppose that for every $x \in X$ and every open neighborhood V of f(x), there exists an

> open neighborhood U of x such that $f(U) \subseteq V$. Let W be open in Y, and for every $x \in f^{-1}(W)$, choose an open neighborhood U_x with $f(U_x) \subseteq W$. Then $f^{-1}(W) \subseteq \bigcup_{x \in f^{-1}(W)} U_x \subseteq f^{-1}(W)$, so $f^{-1}(W) = \bigcup_{x \in f^{-1}(W)} U_x$. Since this is a union of open sets, it is open. Since W was an arbitrary open subset of Y, this proves that f is continuous.

- **II**. Let (X, d_X) and (Y, d_Y) be two metric spaces. A metric $D: X \times Y \times X \times Y \to \mathbb{R}$ can be defined by
- (10) $D((x_1, y_1), (x_2, y_2)) = d(x_1, x_2) + d(y_1, y_2)$ (you do not need to verify that D is a metric). Prove that the metric topology for D equals the product topology on $X \times Y$ (Hint: First check that $B_{d_X}(x, \epsilon/2) \times B_{d_Y}(y, \epsilon/2) \subseteq B_D((x, y), \epsilon) \subseteq B_{d_X}(x, \epsilon) \times B_{d_Y}(y, \epsilon)$.)

First we note that if $(x_1, y_1) \in B_{d_X}(x, \epsilon/2) \times B_{d_Y}(y, \epsilon/2)$, then

$$D((x_1, y_1), (x, y)) = d_X(x_1, x) + d_Y(y_1, y) < \epsilon/2 + \epsilon/2 = \epsilon ,$$

so $(x_1, y_1) \in B_D((x, y))$. Therefore $B_{d_X}(x, \epsilon/2) \times B_{d_Y}(y, \epsilon/2) \subseteq B_D((x, y), \epsilon)$. Also, if $(x_2, y_2) \in B_D((x, y), \epsilon)$, then

$$d_X(x_2, x) \le d_X(x_2, x) + d_Y(y_2, y) = D((x_2, y_2), (x, y)) < \epsilon ,$$

so $x_2 \in B_{d_X}(x,\epsilon)$ and similarly $y_2 \in B_{d_Y}(y,\epsilon)$. This shows that $B_D((x,y),\epsilon) \subseteq B_{d_X}(x,\epsilon) \times B_{d_Y}(y,\epsilon)$. Now, let \mathcal{B} be the set of ϵ -balls for the *D*-metric. By definition it generates the *D*-metric topology. We will verify the conditions of the Basis Recognition Theorem in order to verify that \mathcal{B} it generates the product topology.

To show that the sets $B_D((x, y), \epsilon)$ are open in the product topology, let $(x_1, y_1) \in B_D((x, y), \epsilon)$. Then there exists a δ (in fact, $\delta = \epsilon - D((x_1, y_1), (x, y))$) such that $B_D((x_1, y_1), \delta) \subseteq B_D((x, y), \epsilon)$. So we have $B_{d_X}(x, \delta/2) \times B_{d_Y}(y, \delta/2) \subseteq B_D((x_1, y_1), \delta) \subseteq B_D((x_1, y_1), \epsilon)$. Therefore the sets $B_D((x, y), \epsilon)$ are open in the product topology. For the second condition, let an set U open in the product topology and a point $(x, y) \in U$ be given. There exists a basic open set $B_{d_X}(x, \epsilon_1) \times B_{d_Y}(y, \epsilon_2)$ contained in U. Let ϵ be the minimum of ϵ_1 and ϵ_2 . Then we have $(x, y) \in B_D((x, y), \epsilon) \subseteq B_{d_X}(x, \epsilon) \times B_{d_Y}(y, \epsilon) \subseteq U$.

III. Let $X = \prod_{\alpha \in \mathcal{A}} X_{\alpha}$ be product of nonempty spaces, and suppose that $f: Y \to X$ is a function from a space (10) Y into X. Prove that if $\pi_{\alpha} \circ f$ is continuous for every α , then f is continuous.

Let
$$\pi_{\alpha_1}^{-1}(U_{\alpha_1}) \cap \cdots \cap \pi_{\alpha_n}^{-1}(U_{\alpha_n})$$
 be a basic open set in $\prod_{\alpha \in \mathcal{A}} X_\alpha$. We have

$$f^{-1}(\pi_{\alpha_1}^{-1}(U_{\alpha_1}) \cap \cdots \cap \pi_{\alpha_n}^{-1}(U_{\alpha_n})) = f^{-1}(\pi_{\alpha_1}^{-1}(U_{\alpha_1})) \cap \cdots \cap f^{-1}(\pi_{\alpha_n}^{-1}(U_{\alpha_n}))$$

$$= (\pi_{\alpha_1} \circ f)^{-1}(U_{\alpha_1}) \cap \cdots \cap (\pi_{\alpha_n} \circ f)^{-1}(U_{\alpha_n}).$$

Since each $\pi_{\alpha_i} \circ f$ is continuous, each $(\pi_{\alpha_i} \circ f)^{-1}(U_{\alpha_i})$ is open, so $(\pi_{\alpha_1} \circ f)^{-1}(U_{\alpha_1})) \cap \cdots \cap (\pi_{\alpha_n} \circ f)^{-1}(U_{\alpha_n})$ is open.

- **IV**. Let X be the real numbers with the cofinite topology.
- (10)
 - 1. Prove that the integers are a dense subset of X.

Let U be a nonempty open subset of X. Then $U = \mathbb{R} - \{r_1, \ldots, r_n\}$ for some finite subset $\{r_1, \ldots, r_n\}$ of \mathbb{R} . Since this set is finite, it does not contain all of \mathbb{Z} , so there exists $n \in \mathbb{Z} \cap U$. Therefore \mathbb{Z} is dense.

2. Prove that X is not second countable.

Let $\{U_1, U_2, \ldots\}$ be a countable collection of open subsets. We may delete any empty elements to assume that all are nonempty. Each nonempty U_i is of the form $\mathbb{R} - F_i$ for some finite subset. The union $\bigcup_{i=1}^{\infty} F_i$ is countable, so there exists $r_0 \in \mathbb{R} - \bigcup_{i=1}^{\infty} F_i$. The set $U = \mathbb{R} - \{r_0\}$ is open, and does not contain any U_i since $r_0 \in U_i$ for every U_i . So U is not a union of any subcollection of $\{U_1, U_2, \ldots\}$, and consequently this collection is not a basis of X.

V. Let $X = \prod_{i=1}^{\infty} \mathbb{R}$ be the product of countably many copies of the real line (where \mathbb{R} has the standard topology and the product has the product topology).

1. State the Tychonoff Theorem.

A product of compact spaces is compact.

2. Let $A = \{a_n \mid n \in \mathbb{N}\}$ be a set of real numbers, and for each $n \in \mathbb{N}$, let $x_n \in X$ be the point $(a_n, \ldots, a_n, 0, 0, \ldots)$, where the first n coordinates are a_n and all other coordinates are 0. Suppose that $T: X \to \mathbb{R}$ is a continuous function. Prove that if A is a bounded subset of \mathbb{R} , then $\{T(x_n) \mid n \in \mathbb{N}\}$ is a bounded subset of X. Hint: For some $M, A \subset [-M, M]$.

Since A is a bounded subset of \mathbb{R} , there exists a number M so that $A \subset [-M, M]$. Since [-M, M] is compact, the Tychonoff Theorem shows that $\prod_{i=1}^{\infty} [-M, M]$ is a compact subset of X. Therefore $T(\prod_{i=1}^{\infty} [-M, M])$ is a bounded subset of \mathbb{R} . Since $T(\prod_{i=1}^{\infty} [-M, M])$ contains every $T(x_n)$, this shows that $\{T(x_n) \mid n \in \mathbb{N}\}$ is a bounded subset of \mathbb{R} .

VI. Let (X, d) be a metric space and let A and B be compact subsets of X with $A \cap B = \emptyset$. Prove that there (10) exists $\delta_0 > 0$ such that $d(a, b) \ge \delta_0$ for all $a \in A$ and all $b \in B$ (you may assume that $d: X \times X \to \mathbb{R}$ is continuous).

Consider $d|_{A\times B} \colon A \times B \to \mathbb{R}$. It is continuous since it is a restriction of d, and since A and B are compact, $A \times B$ is also compact. Therefore $d|_{A\times B}$ assumes a minimum value, that is, there is a pair $(a_0, b_0) \in A \times B$ with $d(a_0, b_0) \leq d(a, b)$ for all $(a, b) \in A \times B$. Since $A \cap B = \emptyset$, $a_0 \neq b_0$ and therefore $d(a_0, b_0) > 0$. This (or any smaller positive number) is the desired values of δ_0 .

- VII. Say that a space X is *compactly connected* if for every x and y in X, there exists a compact connected (20) subset of X that contains x and y. For each of the following statements, prove or give a counterexample.
 - 1. Every compactly connected space is connected.

Proof: Fix $x_0 \in X$. For each $x \in X$, choose a compact connected set A_x containing x_0 and x. Since all A_x are connected, and thier intersection is nonempty, $X = \bigcup_{x \in X} A_x$ is connected.

2. Every path-connected space is compactly connected.

Proof: Given x and y in X, choose a path $\alpha: I \to X$ from x to y. Since I is compact and connected, so is the image $\alpha(I)$. Since $\alpha(I)$ contains x and y, this shows that X is compactly connected.

3. The image of a compactly connected space under a continuous map is compactly connected.

Proof: Let $f: X \to Y$ be continuous, with X compactly connected, and choose y_1 and y_2 in f(X). Choose $x_i \in X$ with $f(x_i) = y_i$. Since X is compactly connected, there exists a compact connected set $C \subseteq X$ with $x_1, x_2 \in C$. Then, f(C) is a compact, connected subset of Y containing y_1 and y_2 .

4. Every product of compactly connected spaces is compactly connected (you may take as known the fact that an arbitrary product of connected spaces is connected).

Proof: Let $\prod X_{\alpha}$ be a product of compactly connected spaces, and let $(x_{\alpha}), (y_{\alpha}) \in \prod X_{\alpha}$. For each α , choose a compact, connected subset $C_{\alpha} \in X_{\alpha}$ containing x_{α} and y_{α} . Then, $\prod C_{\alpha}$ is connected, and is compact by the Tychonoff Theorem, so is a compact, connected subset of $\prod X_{\alpha}$ containing (x_{α}) and (y_{α}) .

VIII. Recall that a map is called *open* if it takes open sets to open sets.

(10)

1. Prove that a continuous, surjective, open map must be a quotient map.

Let $f: X \to Y$ be continuous, surjective, and open. Let U be a open subset of Y. We must show that U is open in Y if and only if $f^{-1}(U)$ is open in X.

If U is open in Y, then $f^{-1}(U)$ is open in X since X is continuous. Suppose that $f^{-1}(U)$ is open in X. Since f is an open map, $f(f^{-1}(U))$ is open in Y, and since f is surjective, $f(f^{-1}(U)) = U$.

2. Give an example of a quotient map that is not an open map (you need not verify that the map is a quotient map).

Define $q: [0,1] \to S^1$ by $q(t) = e^{2\pi i t}$. This is a quotient map, but the image of the open set [0,1/2) is not open in S^1 .

IX. State the universal property of quotient maps.

(5)

Let $p: X \to Y$ be a quotient map, and let $f: Y \to Z$ be a function. The universal property says that f is continuous if and only if $f \circ p$ is continuous.

- **X**. Suppose that $\{X_{\alpha} \mid \alpha \in \mathcal{A}\}$ is an indexed collection of sets, infinitely many of which are noncompact.
- (10) Prove that $\prod_{\alpha \in \mathcal{A}} X_{\alpha}$ is not locally compact. (Hint: prove that if a subset *C* contains a basis element, then there is a continuous surjection from *C* onto a noncompact factor, and from this, deduce that $\prod X_{\alpha}$ is

not locally compact.)

Suppose that $\{X_{\alpha} \mid \alpha \in \mathcal{A}\}$ is locally compact, and choose a point (x_{α}) in $\{X_{\alpha} \mid \alpha \in \mathcal{A}\}$. Then there is a compact subset C containing an open neighborhood $\pi_{\alpha_1}^{-1}(U_{\alpha_1}) \cap \cdots \cap \pi_{\alpha_n}^{-1}(U_{\alpha_n})$ of (x_{α}) . Since there are infinitely many noncompact factors, we may choose an index β such that X_{β} is noncompact and β is not equal to one of the α_i . The projection map $\pi_{\beta} \colon C \to X_{\beta}$ is surjective, since for any $y \in X_{\beta}$, the point (y_{α}) with all $y_{\alpha} = x_{\alpha}$ except that $y_{\beta} = y$ lies in $\pi_{\alpha_1}^{-1}(U_{\alpha_1}) \cap \cdots \cap \pi_{\alpha_n}^{-1}(U_{\alpha_n})$, and hence in C, and $\pi_{\beta}((y_{\alpha})) = y_{\beta} = y$. But this is impossible, as C is compact and X_{β} is noncompact.

 $\alpha \in \mathcal{A}$

XI. Let A be a subset of \mathbb{R}^5 , which has no limit point in \mathbb{R}^5 , and let $\sigma: A \to \mathbb{R}$ be any function. Prove that (10) there exists a continuous map $f: \mathbb{R}^5 \to \mathbb{R}$ with $f|_A = \sigma$.

> We know that \mathbb{R}^5 normal (since it is metrizable). Now A is closed, since it contains all of its limit points. Also, it has the discrete topology since for every $a \in A$, there exists a neighborhood U of awith $U \cap A = \{a\}$ (otherwise a would be a limit point of A). Since A has the discrete topology, σ is continuous, so the Tietze Extension Theorem implies that there is an extension of σ to a continuous map $f \colon \mathbb{R}^5 \to \mathbb{R}$.

XII. For each of the following, prove or give a counterexample.

(15)

1. If $f: X \to Y$ is a continuous surjective map between compact Hausdorff spaces, then f is a quotient map.

Proof: Let C be a subset of Y. If C is closed, then $f^{-1}(C)$ is closed in X since f is continuous. If $f^{-1}(C)$ is closed in X, then it is compact, so $C = f(f^{-1}(C))$ is closed in Y.

2. If a manifold M has nonempty boundary, then M is compact.

Counterexample: The upper half space \mathbb{H} is a manifold with nonempty boundary, but it is not compact.

3. Let $f: X \to Y$ be continuous and injective. If $f(x_n) \to f(x)$ in Y, then $x_n \to x$ in X.

Counterexample: Let $f: [0,1) \to S^1$ be $f(t) = e^{2\pi i t}$. For the sequence $x_n = 1 - \frac{1}{n}$, $f(x_n)$ converges to (1,0) = f(0), but x_n does not converge to 0 in [0,1).