Instructions: Give brief, clear answers.

- I. Let $X = \mathbb{R}$ and let $\mathcal{T} = \{U \subseteq X \mid \exists M \in \mathbb{R}, (M, \infty) \subseteq U\} \cup \{\emptyset\}$ (where (M, ∞) means $\{r \in \mathbb{R} \mid r > M\}$). (10)
 - 1. Prove that \mathcal{T} is a topology on X (you do not need to worry about special cases involving the empty set).
 - 2. Prove that with this topology, X is not Hausdorff.
- **II**. Let \mathcal{S} be a collection of subsets of a set X, such that $X = \bigcup_{S \in \mathcal{S}} S$. Define $\mathcal{B} = \{S_1 \cap S_2 \cap \cdots \cap S_n \mid S_i \in \mathcal{S}\},\$
- (10) that is, the collection of all subsets of X that are intersections of finitely many elements of S. Verify that \mathcal{B} is a basis.
- **III.** Prove that if \mathcal{B} is a basis for the topology on a space X, and $A \subseteq X$, then $\{B \cap A \mid B \in \mathcal{B}\}$ is a basis for (10) the subspace topology on A.
- IV. Prove that there is no countable basis for the lower-limit topology on \mathbb{R} .
- (10)

(40)

- V. For each of the following, prove or give a counterexample.
 - 1. If $f: X \to Y$ is continuous and surjective, and U is an open subset of X, then f(U) is an open subset of Y.
 - 2. If $f: X \to Y$ is continuous and surjective, and C is a closed subset of X, then f(C) is a closed subset of Y.
 - 3. If X is Hausdorff, then each point of X is a closed subset.
 - 4. If X is Hausdorff, then every subspace of X is Hausdorff.
 - 5. Let $f: X \to Y$ be continuous. If $x_n \to x$ in X, then $f(x_n) \to f(x)$ in Y.
 - 6. Let $f: X \to Y$ be continuous. If $f(x_n) \to f(x)$ in Y, then $x_n \to x$ in X.
 - 7. Let $f: X \to Y$ be continuous and injective. If $f(x_n) \to f(x)$ in Y, then $x_n \to x$ in X.
 - 8. If T_v is a translation of \mathbb{R}^2 and L is a linear transformation of \mathbb{R}^2 , then $L \circ T_v = T_{L(v)} \circ L$.
- **VI**. Let [0,1] be the unit interval in \mathbb{R} . Let X be a space whose points are closed subsets and having the (10) following property: Given any two disjoint closed subsets A and B of X, there exists a continuous function $f: X \to [0,1]$ such that $f(A) = \{0\}$ and $f(B) = \{1\}$. Prove that X is normal. Hint: [0,1/4) and (3/4,1] are open subsets of [0,1].
- **VII.** Let X be the unit circle in the plane, with the usual metric. Prove that every isometry $J: X \to X$ is (10) surjective.