Instructions: Give brief, clear answers.
I. Let $X=\mathbb{R}$ and let $\mathcal{T}=\{U \subseteq X \mid \exists M \in \mathbb{R},(M, \infty) \subseteq U\} \cup\{\emptyset\}$ (where (M, ∞) means $\{r \in \mathbb{R} \mid r>M\}$). (10)

1. Prove that \mathcal{T} is a topology on X (you do not need to worry about special cases involving the empty set).
2. Prove that with this topology, X is not Hausdorff.
II. Let \mathcal{S} be a collection of subsets of a set X, such that $X=\cup_{S \in \mathcal{S}} S$. Define $\mathcal{B}=\left\{S_{1} \cap S_{2} \cap \cdots \cap S_{n} \mid S_{i} \in \mathcal{S}\right\}$,
(10) that is, the collection of all subsets of X that are intersections of finitely many elements of \mathcal{S}. Verify that \mathcal{B} is a basis.
III. Prove that if \mathcal{B} is a basis for the topology on a space X, and $A \subseteq X$, then $\{B \cap A \mid B \in \mathcal{B}\}$ is a basis for
(10) the subspace topology on A.
IV. Prove that there is no countable basis for the lower-limit topology on \mathbb{R}.
(10)
V. For each of the following, prove or give a counterexample.
(40)
3. If $f: X \rightarrow Y$ is continuous and surjective, and U is an open subset of X, then $f(U)$ is an open subset of Y.
4. If $f: X \rightarrow Y$ is continuous and surjective, and C is a closed subset of X, then $f(C)$ is a closed subset of Y.
5. If X is Hausdorff, then each point of X is a closed subset.
6. If X is Hausdorff, then every subspace of X is Hausdorff.
7. Let $f: X \rightarrow Y$ be continuous. If $x_{n} \rightarrow x$ in X, then $f\left(x_{n}\right) \rightarrow f(x)$ in Y.
8. Let $f: X \rightarrow Y$ be continuous. If $f\left(x_{n}\right) \rightarrow f(x)$ in Y, then $x_{n} \rightarrow x$ in X.
9. Let $f: X \rightarrow Y$ be continuous and injective. If $f\left(x_{n}\right) \rightarrow f(x)$ in Y, then $x_{n} \rightarrow x$ in X.
10. If T_{v} is a translation of \mathbb{R}^{2} and L is a linear transformation of \mathbb{R}^{2}, then $L \circ T_{v}=T_{L(v)} \circ L$.
VI. Let $[0,1]$ be the unit interval in \mathbb{R}. Let X be a space whose points are closed subsets and having the
(10) following property: Given any two disjoint closed subsets A and B of X, there exists a continuous function $f: X \rightarrow[0,1]$ such that $f(A)=\{0\}$ and $f(B)=\{1\}$. Prove that X is normal. Hint: $[0,1 / 4)$ and $(3 / 4,1]$ are open subsets of $[0,1]$.
VII. Let X be the unit circle in the plane, with the usual metric. Prove that every isometry $J: X \rightarrow X$ is (10) surjective.
