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Name (please print)

Instructions: Give brief, clear answers.

I.
(10)

Let X = R and let T = {U ⊆ X | ∃M ∈ R, (M,∞) ⊆ U} ∪ {∅} (where (M,∞) means {r ∈ R | r > M}).

1. Prove that T is a topology on X (you do not need to worry about special cases involving the empty set).

X is open since (0,∞) ⊂ X. The empty set is open by definition of T .

Suppose {Uα}α∈A are open sets. Choose a (nonempty) Uα0 . For some M , (M,∞) ⊆ Uα0 . Therefore
(M,∞) ⊆ ∪α∈AUα, so ∪α∈AUα is also open.

Suppose {Uα1 , . . . , Uαn} are open. For each i, choose Mi with (Mi,∞) ⊆ Uαi . Put M equal to the
maximum of the Mi, then (M,∞) ⊆ ∩n

i=1Uαi , so ∩n
i=1Uαi is open.

2. Prove that with this topology, X is not Hausdorff.

In fact, no two points can have disjoint open neighborhoods. For if U and V were open neighborhoods
of two distinct points, then as in part 3 of the proof that T is a topology, there exists an interval
(M,∞) ⊆ U ∩ V , and U and V are not disjoint.

II.
(10)

Let S be a collection of subsets of a set X, such that X = ∪S∈SS. Define B = {S1∩S2∩ · · · ∩Sn | Si ∈ S},
that is, the collection of all subsets of X that are intersections of finitely many elements of S. Verify that
B is a basis.

By hypothesis, X = ∪S∈SS. Let B1 = S1 ∩ · · · ∩ Sm and B2 = T1 ∩ · · · ∩ Tn be two elements of B, and
suppose that x ∈ B1 ∩B2. Then x ∈ S1 ∩ · · · ∩Sm ∩T1 ∩ · · · ∩Tn = B1 ∩B2, and S1 ∩ · · · ∩Sm ∩T1 ∩ · · · ∩Tn

is an element of B.

III.
(10)

Prove that if B is a basis for the topology on a space X, and A ⊆ X, then {B ∩ A | B ∈ B} is a basis for
the subspace topology on A.

It suffices to verify the hypotheses of the Basis Recognition Theorem. Each B∩A is open in A. Suppose that
x ∈ V , where V is open in A. Since V is open in A, there exists an open set U in X with V = U ∩A. Since
B is a basis for the topology on X, there exists B ∈ B such that x ∈ B ⊆ U . So x ∈ B ∩A ⊆ U ∩A = V .

IV.
(10)

Prove that there is no countable basis for the lower-limit topology on R.

Given a basis B for the lower-limit topology, we will show that B is uncountable. For each r ∈ R, choose
Br ∈ B with r ∈ Br ⊆ [r, r + 1). If r 6= s, say r < s, then r /∈ Bs since every element of Bs is at least s. So
all the sets Br for r ∈ R are distinct, and B contains uncountably many elements.

V.
(40)

For each of the following, prove or give a counterexample.

1. If f : X → Y is continuous and surjective, and U is an open subset of X, then f(U) is an open subset of Y .

False. Among many possible examples, take the example f : [0, 1) → S1, where S1 is the unit circle,
given by f(t) = exp(2πit). [0, 1/2) is open in [0, 1) (because it is [0, 1) ∩ (−1/2, 1/2)), but f([0, 1/2))
is not open in S1, (since (1, 0) is a limit point of the complement). Another popular example is the
identity function from (R, lower limit) to R, and U = [0, 1).

2. If f : X → Y is continuous and surjective, and C is a closed subset of X, then f(C) is a closed subset of Y .
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False. For the example in the previous problem, [1/2, 1) is closed in [0, 1) (because it is [0, 1)∩ [1/2, 1]),
but f([1/2, 1)) is not closed in S1 (since it does not contain its limit point (1, 0)). For the identity
function from (R, lower limit) to R, take C = [0, 1), which is also closed.

3. If X is Hausdorff, then each point of X is a closed subset.

True. Let x ∈ X, and for each y ∈ X with y 6= x, choose disjoint open neighborhoods Uy and Vy of x
and y respectively. Then, X − {x} = ∪y 6=xVy is open, so {x} is closed.

4. If X is Hausdorff, then every subspace of X is Hausdorff.

True. Let A ⊆ X and let a 6= b be two points in A. In X, a and b have disjoint open neighborhoods U
and V , so U ∩A and V ∩A are disjoint open neighborhoods of a and b in A.

5. Let f : X → Y be continuous. If xn → x in X, then f(xn) → f(x) in Y .

True. Let U be any open neighborhood of f(x). Since f is continuous, f−1(U) is an open neighborhood
of x in X. Since xn → x, there exists N so that if n > N , then xn ∈ f−1(U). But then, if n > N ,
f(xn) ∈ U .

6. Let f : X → Y be continuous. If f(xn) → f(x) in Y , then xn → x in X.

False. Let f : R → R be f(x) = x2, and let xn = 1 + 1/n. Then f(xn) → 1 = f(−1), but xn does not
converge to −1.

7. Let f : X → Y be continuous and injective. If f(xn) → f(x) in Y , then xn → x in X.

False. In the example f : [0, 1) → S1 given by f(t) = exp(2πit), the sequence f(1 − 1/n) converges to
(1, 0) = f(0) in S1, but 1− 1/n does not converge to 0 in [0, 1).

8. If Tv is a translation of R2 and L is a linear transformation of R2, then L ◦ Tv = TL(v) ◦ L.

True. For any p, we have (L◦Tv)(p) = L(Tv(p)) = L(p+v) = L(p)+L(v) = TL(v)(L(p)) = (TL(v)◦L)(p).

VI.
(10)

Let [0, 1] be the unit interval in R. Let X be a space whose points are closed subsets and having the
following property: Given any two disjoint closed subsets A and B of X, there exists a continuous function
f : X → [0, 1] such that f(A) = {0} and f(B) = {1}. Prove that X is normal. Hint: [0, 1/4) and (3/4, 1]
are open subsets of [0, 1].

The points of X are closed subsets, by hypothesis. Let A and B be disjoint closed subsets of X. By
hypothesis, there exists a continuous function f : X → [0, 1] such that f(A) = {0} and f(B) = {1}. Since
[0, 1/4) and (3/4, 1] are open subsets of [0, 1] and f is continuous, f−1([0, 1/4)) and f−1((3/4, 1]) are open
in X, and they are disjoint since [0, 1/4) and (3/4, 1] are. Since A ⊆ f−1([0, 1/4)) and B ⊆ f−1((3/4, 1]),
these are disjoint open sets containing A and B respectively.

VII.
(10)

Let X be the unit circle in the plane, with the usual metric. Prove that every isometry J : X → X is
surjective.

Suppose that J is not surjective. Let p be a point in S1 that is not in the image of J , and let p′ be a point
that is in the image, say p′ = J(q′). If d(p, p′) = 2, then for the unique point q with d(q, q′) = 2, we must have
d(J(q), J(q′)) = 2 and therefore J(q) = p. So we may assume that d(p, p′) < 2. Then, there are two points q1

and q2 with d(q1, q
′) = d(q2, q

′) = d(p, p′), and there is one other point p1, besides p, with d(p1, p
′) = d(p, p′).

Since p is not in the image of J , we can only have d(J(q1), J(q′)) = d(J(q2), J(q′)) if both J(q1) and J(q2)
equal p1, but this would contradict the fact that isometries are injective.


