Instructions: Give brief, clear answers.
I. Let $X=\mathbb{R}$ and let $\mathcal{T}=\{U \subseteq X \mid \exists M \in \mathbb{R},(M, \infty) \subseteq U\} \cup\{\emptyset\}$ (where (M, ∞) means $\{r \in \mathbb{R} \mid r>M\}$).
(10)

1. Prove that \mathcal{T} is a topology on X (you do not need to worry about special cases involving the empty set).
X is open since $(0, \infty) \subset X$. The empty set is open by definition of \mathcal{T}.
Suppose $\left\{U_{\alpha}\right\}_{\alpha \in \mathcal{A}}$ are open sets. Choose a (nonempty) $U_{\alpha_{0}}$. For some $M,(M, \infty) \subseteq U_{\alpha_{0}}$. Therefore $(M, \infty) \subseteq \cup_{\alpha \in \mathcal{A}} U_{\alpha}$, so $\cup_{\alpha \in \mathcal{A}} U_{\alpha}$ is also open.
Suppose $\left\{U_{\alpha_{1}}, \ldots, U_{\alpha_{n}}\right\}$ are open. For each i, choose M_{i} with $\left(M_{i}, \infty\right) \subseteq U_{\alpha_{i}}$. Put M equal to the maximum of the M_{i}, then $(M, \infty) \subseteq \cap_{i=1}^{n} U_{\alpha_{i}}$, so $\cap_{i=1}^{n} U_{\alpha_{i}}$ is open.
2. Prove that with this topology, X is not Hausdorff.

In fact, no two points can have disjoint open neighborhoods. For if U and V were open neighborhoods of two distinct points, then as in part 3 of the proof that \mathcal{T} is a topology, there exists an interval $(M, \infty) \subseteq U \cap V$, and U and V are not disjoint.
II. Let \mathcal{S} be a collection of subsets of a set X, such that $X=\cup_{S \in \mathcal{S}} S$. Define $\mathcal{B}=\left\{S_{1} \cap S_{2} \cap \cdots \cap S_{n} \mid S_{i} \in \mathcal{S}\right\}$,
(10) that is, the collection of all subsets of X that are intersections of finitely many elements of \mathcal{S}. Verify that \mathcal{B} is a basis.

By hypothesis, $X=\cup_{S \in \mathcal{S}} S$. Let $B_{1}=S_{1} \cap \cdots \cap S_{m}$ and $B_{2}=T_{1} \cap \cdots \cap T_{n}$ be two elements of \mathcal{B}, and suppose that $x \in B_{1} \cap B_{2}$. Then $x \in S_{1} \cap \cdots \cap S_{m} \cap T_{1} \cap \cdots \cap T_{n}=B_{1} \cap B_{2}$, and $S_{1} \cap \cdots \cap S_{m} \cap T_{1} \cap \cdots \cap T_{n}$ is an element of \mathcal{B}.
III. Prove that if \mathcal{B} is a basis for the topology on a space X, and $A \subseteq X$, then $\{B \cap A \mid B \in \mathcal{B}\}$ is a basis for
(10) the subspace topology on A.

It suffices to verify the hypotheses of the Basis Recognition Theorem. Each $B \cap A$ is open in A. Suppose that $x \in V$, where V is open in A. Since V is open in A, there exists an open set U in X with $V=U \cap A$. Since \mathcal{B} is a basis for the topology on X, there exists $B \in \mathcal{B}$ such that $x \in B \subseteq U$. So $x \in B \cap A \subseteq U \cap A=V$.
IV. Prove that there is no countable basis for the lower-limit topology on \mathbb{R}.
(10)

Given a basis \mathcal{B} for the lower-limit topology, we will show that \mathcal{B} is uncountable. For each $r \in \mathbb{R}$, choose $B_{r} \in \mathcal{B}$ with $r \in B_{r} \subseteq[r, r+1)$. If $r \neq s$, say $r<s$, then $r \notin B_{s}$ since every element of B_{s} is at least s. So all the sets B_{r} for $r \in R$ are distinct, and \mathcal{B} contains uncountably many elements.
V. For each of the following, prove or give a counterexample.

1. If $f: X \rightarrow Y$ is continuous and surjective, and U is an open subset of X, then $f(U)$ is an open subset of Y.

False. Among many possible examples, take the example $f:[0,1) \rightarrow S^{1}$, where S^{1} is the unit circle, given by $f(t)=\exp (2 \pi i t)$. $[0,1 / 2)$ is open in $[0,1)$ (because it is $[0,1) \cap(-1 / 2,1 / 2)$), but $f([0,1 / 2)$) is not open in S^{1}, (since $(1,0)$ is a limit point of the complement). Another popular example is the identity function from $(\mathbb{R}$, lower limit) to \mathbb{R}, and $U=[0,1)$.
2. If $f: X \rightarrow Y$ is continuous and surjective, and C is a closed subset of X, then $f(C)$ is a closed subset of Y.

False. For the example in the previous problem, $[1 / 2,1$) is closed in $[0,1$) (because it is $[0,1) \cap[1 / 2,1]$), but $f([1 / 2,1))$ is not closed in S^{1} (since it does not contain its limit point $\left.(1,0)\right)$. For the identity function from (\mathbb{R}, lower limit) to \mathbb{R}, take $C=[0,1$), which is also closed.
3. If X is Hausdorff, then each point of X is a closed subset.

True. Let $x \in X$, and for each $y \in X$ with $y \neq x$, choose disjoint open neighborhoods U_{y} and V_{y} of x and y respectively. Then, $X-\{x\}=\cup_{y \neq x} V_{y}$ is open, so $\{x\}$ is closed.
4. If X is Hausdorff, then every subspace of X is Hausdorff.

True. Let $A \subseteq X$ and let $a \neq b$ be two points in A. In X, a and b have disjoint open neighborhoods U and V, so $U \cap A$ and $V \cap A$ are disjoint open neighborhoods of a and b in A.
5. Let $f: X \rightarrow Y$ be continuous. If $x_{n} \rightarrow x$ in X, then $f\left(x_{n}\right) \rightarrow f(x)$ in Y.

True. Let U be any open neighborhood of $f(x)$. Since f is continuous, $f^{-1}(U)$ is an open neighborhood of x in X. Since $x_{n} \rightarrow x$, there exists N so that if $n>N$, then $x_{n} \in f^{-1}(U)$. But then, if $n>N$, $f\left(x_{n}\right) \in U$.
6. Let $f: X \rightarrow Y$ be continuous. If $f\left(x_{n}\right) \rightarrow f(x)$ in Y, then $x_{n} \rightarrow x$ in X.

False. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be $f(x)=x^{2}$, and let $x_{n}=1+1 / n$. Then $f\left(x_{n}\right) \rightarrow 1=f(-1)$, but x_{n} does not converge to -1 .
7. Let $f: X \rightarrow Y$ be continuous and injective. If $f\left(x_{n}\right) \rightarrow f(x)$ in Y, then $x_{n} \rightarrow x$ in X.

False. In the example $f:[0,1) \rightarrow S^{1}$ given by $f(t)=\exp (2 \pi i t)$, the sequence $f(1-1 / n)$ converges to $(1,0)=f(0)$ in S^{1}, but $1-1 / n$ does not converge to 0 in $[0,1)$.
8. If T_{v} is a translation of \mathbb{R}^{2} and L is a linear transformation of \mathbb{R}^{2}, then $L \circ T_{v}=T_{L(v)} \circ L$.

True. For any p, we have $\left(L \circ T_{v}\right)(p)=L\left(T_{v}(p)\right)=L(p+v)=L(p)+L(v)=T_{L(v)}(L(p))=\left(T_{L(v)} \circ L\right)(p)$.
VI. Let $[0,1]$ be the unit interval in \mathbb{R}. Let X be a space whose points are closed subsets and having the (10) following property: Given any two disjoint closed subsets A and B of X, there exists a continuous function $f: X \rightarrow[0,1]$ such that $f(A)=\{0\}$ and $f(B)=\{1\}$. Prove that X is normal. Hint: $[0,1 / 4)$ and $(3 / 4,1]$ are open subsets of $[0,1]$.

The points of X are closed subsets, by hypothesis. Let A and B be disjoint closed subsets of X. By hypothesis, there exists a continuous function $f: X \rightarrow[0,1]$ such that $f(A)=\{0\}$ and $f(B)=\{1\}$. Since $[0,1 / 4)$ and $(3 / 4,1]$ are open subsets of $[0,1]$ and f is continuous, $f^{-1}([0,1 / 4))$ and $f^{-1}((3 / 4,1])$ are open in X, and they are disjoint since $[0,1 / 4)$ and $(3 / 4,1]$ are. Since $A \subseteq f^{-1}([0,1 / 4))$ and $B \subseteq f^{-1}((3 / 4,1])$, these are disjoint open sets containing A and B respectively.
VII. Let X be the unit circle in the plane, with the usual metric. Prove that every isometry $J: X \rightarrow X$ is (10) surjective.

Suppose that J is not surjective. Let p be a point in S^{1} that is not in the image of J, and let p^{\prime} be a point that is in the image, say $p^{\prime}=J\left(q^{\prime}\right)$. If $d\left(p, p^{\prime}\right)=2$, then for the unique point q with $d\left(q, q^{\prime}\right)=2$, we must have $d\left(J(q), J\left(q^{\prime}\right)\right)=2$ and therefore $J(q)=p$. So we may assume that $d\left(p, p^{\prime}\right)<2$. Then, there are two points q_{1} and q_{2} with $d\left(q_{1}, q^{\prime}\right)=d\left(q_{2}, q^{\prime}\right)=d\left(p, p^{\prime}\right)$, and there is one other point p_{1}, besides p, with $d\left(p_{1}, p^{\prime}\right)=d\left(p, p^{\prime}\right)$. Since p is not in the image of J, we can only have $d\left(J\left(q_{1}\right), J\left(q^{\prime}\right)\right)=d\left(J\left(q_{2}\right), J\left(q^{\prime}\right)\right)$ if both $J\left(q_{1}\right)$ and $J\left(q_{2}\right)$ equal p_{1}, but this would contradict the fact that isometries are injective.

