Examination II November 9, 2004

Instructions: Give brief, clear answers.

Ι. Prove that every compact subset of a Hausdorff space is closed.

- II. Define what it means to say that a space X is *locally compact*. Define the topology on the 1-point compactification $X^+ = X \cup \{\infty\}$, and prove that if X is locally compact Hausdorff, then X^+ is Hausdorff. (10)
- Let \mathcal{U} be an open cover of a metric space (X, d). Define what it means to say that the number δ is a *Lebesque* III. (5)number for \mathcal{U} .
- IV. Prove that if X is locally path-connected, then it has a basis that consists of path-connected sets.
- (10)Briefly describe the stereographic projection homeomorphism between \mathbb{R}^2 and $S^2 - \{(0,0,1)\}$ (formulas are V.
- not necessary, but a good picture is necessary). On a second picture of S^2 , indicate the subsets of S^2 that (10)correspond to the circles $x^2 + y^2 = n^2$ (for $n \in \mathbb{N}$) of \mathbb{R}^2 , and indicate the subset of S^2 that corresponds to the x-axis of \mathbb{R}^2 .
- VI. Let X be a connected metric space.
- (10) 1. Suppose that the connected metric space (X, d) contains two points a and b with d(a, b) = 2. Prove that there exists a point $c \in X$ for which d(a,c) = 1. Hint: use the continuous function $D: X \to \mathbb{R}$ defined by D(x) = d(a, x).
 - 2. Prove that there exists a point $c \in X$ with d(a, c) = d(b, c).
 - 3. Show by example that there need not exist a point such that d(a, c) = d(b, c) = 1.

VII. Let $(\mathbb{R}, \mathcal{L})$ be \mathbb{R} with the lower-limit topology.

- (10)1. Prove that $(\mathbb{R}, \mathcal{L}) \times (\mathbb{R}, \mathcal{L})$ is separable. Hint: $\mathbb{Q} \times \mathbb{Q}$ is countable.
 - 2. Find a subspace of $(\mathbb{R}, \mathcal{L}) \times (\mathbb{R}, \mathcal{L})$ that is not separable.
- **VIII.** Prove that if X and Y are path-connected spaces, then $X \times Y$ is path-connected. (10)
- IX. Prove that every continuous map from \mathbb{R} to \mathbb{Q} is constant.
- (10)

X. Prove or give a counterexample to each of the following assertions.

(25)

- 1. Let (X, d) be a metric space with the property that for every $\epsilon > 0$, there is a finite covering of X by balls of radius ϵ . Then X is compact.
- 2. The cofinite topology on $\mathbb{R} \times \mathbb{R}$ equals the product topology (\mathbb{R} , cofinite) \times (\mathbb{R} , cofinite).
- 3. If there is a subspace A of X for which there exists an unbounded continuous function from A to \mathbb{R} , then there exists an unbounded continuous function from X to \mathbb{R} .
- 4. If every connected subspace of X is compact, then X is compact.
- 5. If every compact subspace of X is connected, then X is connected.

⁽¹⁰⁾